4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сообщение о сотовой связи. Мобильная сотовая связь

Как работает сотовая связь. Часть 1: история и развитие

XXI век точно нельзя представить без современных мобильных телефонов и сотовых сетей. Мы обращаемся к ним не просто ежедневно, а сотни и тысячи раз в день. Практически каждый раз, когда просто смотрим на свой смартфон или используем его любым возможным образом, полагаемся именно на сотовые сети, которые соединяют нас с тысячами таких же зевак. Скорее всего, и этот материал вы подгрузили через них и сейчас читаете в общественном транспорте или просто на улице.

Современные смартфоны впечатляют своей производительностью, экранами с миллионами разных цветов, громкими динамиками и камерами на десяток-второй мегапикселей. Но без доступа к сотовым сетям они превращаются в дорогие игровые консоли, фотоаппараты и медиаплееры. Далеко не каждый понимает, как устроена мобильная связь. Именно поэтому мы решили рассказать о ней на страницах нашего сайта. Это первая часть материала, которая введёт вас в курс дела.

Сотовая связь стала новым витком развития технологий

Сотовую связь по праву считают одним из главных изобретений человечества — круче только интернет или какое-нибудь колесо. Корни знаковой технологии достигают 20-х годов. Тогда некоторые американские полицейские участки использовали телефонную радиосвязь диапазона 2 МГц, чтобы передавать информацию о преступниках на приёмники в машинах патрульных. Её внедрили в 1921, а в 1933 году снабдили возможностью двустороннего общения.

В 1934 году Федеральная комиссия связи США разрешила использовать четыре канала в диапазоне частот 30–40 МГц для телефонной связи, и до 1940 года ей начали пользоваться больше десятка тысяч полицейских машин в разных районах страны.

В 1949 году элементы, напоминающие современную сотовую связь, использовались для работы службы такси в американском Детройте. В оговорённых местах водители могли переключаться на конкретные каналы для общения с диспетчерами.

Многие считают прообразом мобильной связи именно эти технологии, но они сильно отличалась от современных по принципу работы. А вот концепция сотовой сети, которую мы знаем сейчас, начала разрабатываться в 1946 году учёными из объединения Bell Labs. Она оказалась принципиально новым витком нашего технологического развития, поэтому реальные перспективы её внедрения стали появляться лишь спустя почти 30 лет — в начале 70-х. Тогда для неё удалось придумать актуальную архитектуру.

Американские инженеры предложили идею разделения территории на ячейки, в каждой из которых должна была быть расположена передающая сигнал станция. Но для её тестирования не было подходящего принимающего оборудования.

Здесь в игру вступила Motorola. В 1973 году один из ведущих инженеров компании Мартин Купер представил миру первый прототип мобильного телефона. Чтобы продемонстрировать работу новой технологии, он прямо с улицы совершил звонок руководству конкурентной компании и похвастал своими успехами. Это впечатлило всех, и компания тут же инвестировала в перспективный проект более 100 миллионов долларов. Начали появляться первые базовые станции.

Первым мобильником стал Motorola DynaTAC 8000, который получил сертификат FCC 21 сентября 1973 года. Он весил более 700 граммов, работал от одного заряда 30 минут, а заряжался около 10 часов. Ах да, стоил такой «динозавр» порядка 4000 долларов, но это не помешало ему стать популярным. Именно с помощью него впервые можно было позвонить, не пользуясь услугами операторов связи. Кстати, это и первое мобильное устройство, которое мог поднять один человек.

В 1974 году Федеральная комиссия связи США дала добро на использование полосы частот в 40 МГц в диапазоне 800 МГц (в 1986 году её расширили на 10 МГц) для мобильной связи. А в 1978 в Чикаго стартовали испытания сотовой сети для опытов с базой в две тысячи абонентов. Именно этот год можно считать началом практического применения нового типа связи. А вот коммерческое использование мобильной связи в США началось в 1983 году. Тогда в Чикаго мобильную связь уже могли использовать почти все.

Распространение мобильной связи в Америке обеспечил всемирно известный сейчас оператор AT&T. Он добился от властей лицензирования необходимых частот и построил первую сеть, которая охватила самые крупные американские города.

В Канаде мобильные сети начали использовать в 1978 году. А Японии их запустили в 1979, в Швеции, Дании, Норвегии и Финляндии — в 1981, в Испании и Англии — в 1982. До 1997 года сотовая связь уже охватила 140 стран мира.

Сотовыми сети называют из-за принципа расстановки вышек

Почему же связь называется именно сотовой? Ответ, и это внезапно, очень прост — вся территория её покрытия делится на равномерные шестиугольники, похожие на пчелиные соты. В центре каждого сектора находится базовая станция.

Форма шестиугольника была выбрана из-за того, что именно она позволяет обеспечить одинаковые расстояния между вышками. Это положительно сказывается на качестве и стабильности сотовой связи и лишает базовые станции дополнительных нагрузок. Вышки сотовой связи активно общаются друг с другом, и в каждом из подобных шестиугольников абоненты получают одинаковые сигналы, которые позволяет нам не чувствовать разрывов соединения.

Шестиугольные ячейки напоминают пчелиные соты, поэтому и связь в итоге называют сотовой. Кстати, это название всё больше отходит на второй план — чтобы не усложнять, его заменяют понятием «мобильная».

SIM-карты предназначены для идентификации абонентов

Несколько десятков лет назад SIM-карт ещё не было. Тогда для идентификации мобильных телефонов в сотовой сети операторы использовали только присвоенные им на заводе номера ESN. Сначала даже казалось, что это на 100% правильное решение, но на практике всё было иначе. Когда абонент менял телефон, ему нужно было ехать в офис оператора, чтобы его зарегистрировать. Эта было дорого и стоило денег.

Нужно было что-то, что смогло бы отделить абонента от его оборудования. Так в 1991 году и появились модули Subscriber Identity Module или SIM-карты. Впервые они появились с приходом 2G. Они представляли собой полноценные компьютеры с процессорами, постоянной и оперативной памятью и модулем шифрования. Первые были размером с визитку, но быстро уменьшились в габаритах, а скоро вообще станут встроенными и перезаписываемыми — мы уже на пороге этого.

Мобильному телефону остался только номер IMEI (International Mobile Equipment Identity). Да, он участвует в работе системы на стороне сотового оператора, но к абоненту не привязан никаким образом. Эта схема исправно работает почти 30 лет.

На каждой SIM-карте хранятся серийный номер ICCID и PIN- и PUK-коды, ключи, идентификаторы и так далее. Важнее всего — международный номер абонента IMSI и уникальный ключ идентификации пользователя под названием KI. Когда мобильный регистрируется в сети оператора, он использует именно IMSI и KI. Когда SIM-карта установлена в телефон, смартфон или другой гаджет, она по факту становится частью телефона и связующим звеном с поставщиком услуг — мы уже рассказывали про это.

Читать еще:  Защищает ли касперский от нового вируса. Вы — Ваша безопасность

За 40 лет мы увидели пять поколений сотовых сетей

Каждое поколение сотовой связи несёт в себе значительные улучшения в сравнении с предыдущим. Это и частотность, и шифрование, и битрейт, и характер обслуживания пользователей. Сегодня мы стоим уже на пороге пятого.

Сеть первого поколения первоначально запустили в Японии в 1979 году. Популярность в Европе и США она получила уже в начале 80-х. Это единственная аналоговая сеть связи, и все последующие уже были цифровыми. 1G занимала частоты 800 и 900 МГц, поддерживала только голосовые звонки и работала отвратительно. Качество звука было ужасным, а вызовы можно было легко перехватить с помощью FM-демодулятора. Роуминг тогда ещё не придумали, а скорость сети составляла 2,4 Кбит/с.

Со временем и простым пользователям, и коммерческим организациям этого оказалось мало — мир начал переходить на цифровую передачу данных. В числе её преимуществ оказались хороший звук, защита от прослушки и более высокая скорость.

Сеть второго поколения в коммерческую эксплуатацию впервые запустила компания Radiolinja. Это случилось в Финляндии в 1991 году. Новый стандарт связи дал абонентам SMS, роуминг, конференц-связь. Максимальная скорость 2G составляла 50 Кбит/с.

После старта второго поколения мир высоких технологий переживал настоящую революцию. Всё больше пользователей интересовались мобильным интернетом. Благодаря нему со временем появились стандарты GPRS и EDGE (2.5G) — они передавали данные на скорости от 115 Кбит/с до 384 Кбит/с соответственно. Это позволило абонентам проверять свою электронную почту прямо с мобильника, что ранее казалось чем-то совершенно невозможным. Дальше было только больше.

Сеть третьего поколения не заставила себя долго ждать. Это было связано с активным внедрением технологии UMTS — универсальных мобильных телекоммуникационных систем, которые поддерживали видеовызовы.

Именно тогда начали появляться различные приложения для чатов, электронной почты, видеосвязи и социальных сетей, веб-браузеры стали более быстрыми и функциональными. Их ввели в коммерческую эксплуатацию в 2001 году. В 3G повысилась эффективность использования частотного спектра за счёт улучшения сжатия звука во время разговора. Поэтому в одном и том же диапазоне частот могло происходить намного больше вызовов одновременно.

Сеть четвёртого поколения была разработана как улучшенная версия более старых сетей. Этот стандарт предлагает ещё более высокую скорость передачи данных и поддерживает все современные мультимедийные сервисы.

Все данные, включая голосовые вызовы, могут передаваться с помощью IP-пакетов. Для увеличения пропускной способности входящей и исходящей линии используются совершенно новые технологии вроде WiMax. Скорость передачи данных у этого стандарта сети благодаря ему поднимается до 1 Гбит/с. Главным недостатком 4G остаётся только недостаточное внедрение в большинстве стран мира. Обычно в больших городах сеть уже работает, а в маленьких нет.

Сеть пятого поколения обещает значительное улучшение передачи данных, меньшую задержку при соединении и другие улучшения. Полноценная эксплуатация стандарта начнётся в течение следующих нескольких лет.

Новый стандарт связи будет бережнее относиться к заряду аккумулятора. Максимальная скорость 5G будет достигать 35 Гбит/с, что в 35 раз быстрее, чем у четвёртого поколения. Значительно уменьшится задержка — это даст возможность обрабатываться тяжёлые операции на удалённых производительных серверах и моментально передавать на мобильные устройства. Тогда необходимость в их невероятной производительности отпадёт везде, где будет покрытие сотовой сети.

Во второй части вы узнаете о сотовой связи ещё больше

Мы разделили материал «Как устроена сотовая связь» на две части. Это первая, и здесь мы копнули в её историю, рассмотрели развитие мобильных сетей по поколениям и прикинули их дальнейшие перспективы в недалёком будущем.

В следующей части мы поговорим про базовые станции, которые находятся в центре пресловутых сот. Мы расскажем, что они собой представляют, могут ли быть опасными для нашего с вами здоровья, а ещё почему не всегда исправно работают.

Сотовая связь – это. Принцип работы сотовой связи

Что такое сотовая связь? Это система, которая использует большое количество беспроводных передатчиков с низким энергопотреблением для создания ячеек – основной географической зоны обслуживания системы беспроводной связи. Переменные уровни мощности позволяют определять размеры ячеек в соответствии с плотностью абонента и потребностями в конкретном регионе.

Когда мобильные пользователи перемещаются из ячейки в ячейку, их разговоры «передаются» между этими зонами для обеспечения бесперебойного обслуживания. Каналы (частоты), используемые в одной такой единице, могут быть повторно использованы в другой на некотором расстоянии.

Сотовая связь – это…

Сотовая связь относится к усовершенствованной службе мобильной телефонной связи (AMPS), которая делит географический регион на участки, называемые ячейками. Цель этого разделения – максимально использовать ограниченное количество частот передачи.

Сотовая связь – это форма технологии связи, которая позволяет использовать мобильные телефоны.

Мобильный телефон – это двунаправленное радио, которое обеспечивает одновременную передачу и прием.

Сотовая мобильная связь основана на географическом разделении зоны покрытия связи. Каждой ячейке выделяется определенное количество частот (или каналов), которые позволяют большому количеству абонентов одновременно вести разговоры.

Общим элементом всех поколений технологий мобильной связи является использование определенных радиочастот (RF), а также повторное использование частот. Это позволяет предоставлять услуги большому количеству абонентов, одновременно уменьшая количество каналов (ширину полосы). Это также позволяет создавать широкие сети, полностью интегрируя передовые возможности мобильного телефона.

Увеличение спроса и потребления, а также развитие различных видов услуг ускорили быстрое технологическое развитие современных сетей, а также непрерывное совершенствование самих сотовых устройств.

Принцип работы мобильной коммуникации

Каждый мобильный телефон использует отдельный временный радиоканал для связи с сотовым сайтом. Данный сайт поддерживает коммуникацию со многими телефонами одновременно, используя один канал на один телефон. Каналы используют пару частот сотовой связи:

  1. Прямую линию для передачи с сотового узла.
  2. Обратную линию, чтобы сотовый узел мог принимать вызовы от пользователей.

Радиоэнергия рассеивается на расстоянии, поэтому мобильные телефоны должны оставаться рядом с базовой станцией, чтобы поддерживать связь. Базовая структура мобильных сетей включает в себя телефонные системы и службы радиосвязи.

Принцип работы сотовой связи (для чайников)

Процесс начинается с активации чипа при введении ПИН-кода вставляемой SIM-карты. Затем осуществляется передача сигнала сотовой связи по управляющим каналам. Ответ вызываемого номера передается по свободному каналу управления на антенну базовой станции, откуда идет передача в центр коммутации подвижной связи.

Центр коммутации ищет базовую станцию с максимальным уровнем сигнала сотового телефона абонента сотовой связи и переключает разговор на нее.

Ранняя архитектура системы телефонной связи

Традиционная мобильная служба была структурирована аналогично телевизионному радиовещанию: один очень мощный передатчик, расположенный в самой высокой точке области, будет транслировать в радиусе до пятидесяти километров.

Концепция сотовой связи структурировала сеть телефонной связи по-другому. Вместо использования одного мощного передатчика многие маломощные передатчики были размещены по всей зоне покрытия сотовой связи.

Читать еще:  Html в нормальный вид. Форматирование кода

Например, путем разделения области на сто различных участков (ячеек) с передатчиками с низким энергопотреблением, использующие по двенадцать разговоров (каналов), емкость системы теоретически может быть увеличена с двенадцати разговоров или голосовых каналов, использующих один мощный передатчик, до двенадцати сотен разговоров (каналов), использующих сотню передатчиков с низким энергопотреблением.

Городской район сконфигурирован как традиционная сеть мобильной телефонной связи с одним мощным передатчиком.

Система мобильной коммуникации с использованием концепции сотовой связи

Проблемы с помехами, вызванные мобильными устройствами, использующими один и тот же канал в смежных областях, доказали, что все каналы не могут повторно использоваться в каждой соте. Несмотря на то что это повлияло на эффективность первоначальной концепции, повторное использование частот стало жизнеспособным решением проблем систем мобильной телефонии.

Инженеры обнаружили, что влияние помех было связано не с расстоянием между зонами, а с отношением расстояния к мощности (радиусу) передатчиков зон. Сокращая радиус зоны на пятьдесят процентов, поставщики услуг могут увеличить число потенциальных клиентов в зоне в четыре раза.

Системы, основанные на областях с радиусом в один километр, будут иметь в сто раз больше каналов, чем системы с областями в радиусе десяти километров. Спекуляция привела к выводу, что, уменьшив радиус зоны до нескольких сотен метров, можно было обслуживать миллионы звонков.

Концепция сотовой связи использует переменные уровни низкой мощности, что позволяет подбирать ячейки в соответствии с плотностью абонента и потребностями данной области. По мере роста популяции можно добавлять ячейки для приспособления к этому росту.

Частоты сотовой связи, используемые в одном кластере ячеек, могут быть повторно использованы в других ячейках. Разговоры могут передаваться из ячейки в ячейку, чтобы поддерживать постоянную телефонную связь, когда пользователь перемещается между ними.

Сотовое радиооборудование (базовая станция) может связываться с мобильными телефонами, пока они находятся в пределах досягаемости. Радиоэнергия рассеивается на расстоянии, поэтому мобильные телефоны должны находиться в пределах рабочего диапазона базовой станции. Как и ранняя система мобильной радиосвязи, базовая станция связывается с мобильными телефонами через канал.

Канал состоит из двух частот: одна для передачи на базовую станцию ​​и одна для приема информации от базовой станции.

Архитектура сотовой системы

Повышение спроса и низкое качество существующих услуг побудили поставщиков мобильных услуг исследовать способы улучшения качества обслуживания и поддержки большего числа пользователей в своих системах. Поскольку количество частотного спектра, доступного для использования подвижной сотовой связью, было ограниченным, для покрытия связи было необходимо эффективное использование требуемых частот.

В современной сотовой телефонии сельские и городские районы делятся на районы в соответствии с конкретными правилами предоставления услуг. Параметры развертывания, такие как количество деления и размеры ячеек, определяются инженерами, имеющими опыт работы в архитектуре сотовых систем.

Обеспечение для каждого региона планируется в соответствии с инженерным планом, который включает в себя ячейки, кластеры, повторное использование частот и передачу обслуживания.

Ячейка является основной географической единицей сотовой системы. Это базовые станции, передающие сигнал через небольшие географические области, которые представлены в виде шестиугольников. Размер каждого варьируется в зависимости от ландшафта. Из-за ограничений, наложенных естественной местностью и искусственными структурами, истинная форма ячеек не является идеальным шестиугольником.

Кластер – это группа ячеек. Ни один канал не используется повторно в кластере.

Поскольку для мобильных систем было доступно лишь небольшое количество частот радиоканалов, инженерам пришлось искать способ повторного использования радиоканалов для одновременной передачи более одного разговора. Решение, принятое в отрасли, называлось планированием или повторным использованием частоты. Повторное использование частот было реализовано путем реструктуризации архитектуры системы мобильной телефонной связи в концепцию сотовой связи.

Стандарты сотовой связи заключаются в следующем: концепция повторного использования частот основана на назначении каждой ячейке группы радиоканалов, используемых в пределах небольшой географической области. Ячейкам присваивается группа каналов, которая полностью отличается от соседних аналогичных единиц. Зона их покрытия называется отпечатком. Этот отпечаток ограничен границей, так что одну и ту же группу каналов можно использовать в разных ячейках, которые находятся достаточно далеко друг от друга, чтобы их частоты не мешали.

Ячейки с одинаковым номером имеют одинаковый набор частот. Если количество доступных частот равно 7, коэффициент повторного использования частоты равен 1/7. То есть каждая ячейка использует 1/7 доступных сотовых каналов.

Препятствия в развитии сотовой связи

К сожалению, экономические соображения сделали нецелесообразной концепцию создания полных систем со многими небольшими участками. Чтобы преодолеть эту трудность, системные операторы разработали идею расщепления клеток. Когда зона обслуживания становится заполненной пользователями, этот подход используется для разделения одной зоны на более мелкие. Таким образом, городские центры могут быть разбиты на столько областей, сколько необходимо для обеспечения приемлемого уровня обслуживания в регионах с интенсивным движением, в то время как более крупные и менее дорогие ячейки могут использоваться для покрытия отдаленных сельских районов.

Последнее препятствие в развитии сотовой сети связано с проблемой, возникшей, когда абонент сотовой связи во время вызова перемещался из одной ячейки в другую. Поскольку соседние зоны не используют одни и те же радиоканалы, вызов должен быть либо отброшен, либо переведен с одного радиоканала на другой, когда пользователь пересекает линию между соседними ячейками.

Поскольку сбрасывание вызова недопустимо, был создан процесс передачи обслуживания. Передача обслуживания происходит, когда сеть мобильной телефонной связи автоматически переводит вызов в другой радиоканал, когда мобильное устройство пересекает соседние ячейки.

Во время разговора две стороны находятся на одном голосовом канале. Когда мобильное устройство выходит из зоны покрытия данного сотового узла, прием становится слабым. На этом этапе используемый сотовый сайт запрашивает передачу обслуживания. Система переключает вызов на более высокочастотный канал на новом сайте, не прерывая вызов и не предупреждая пользователя. Вызов продолжается до тех пор, пока пользователь разговаривает, и абонент не замечает передачи обслуживания.

Компоненты сотовой системы

Сотовая система предлагает мобильным и портативным телефонным станциям ту же услугу, что и фиксированные станции по обычным проводным шлейфам. Она способна обслуживать десятки тысяч абонентов в крупном мегаполисе. Система сотовой связи состоит из следующих четырех основных компонентов, которые работают совместно для предоставления абонентам услуг мобильной связи:

  1. Телефонная сеть общего пользования (PSTN).
  2. Мобильная телефонная станция (МТСО).
  3. Сотовый сайт с антенной системой.
  4. Мобильный абонентский пункт (MSU).

PSTN состоит из локальных сетей, сетей зоны обмена и сети дальней связи, которые соединяют телефоны и другие устройства связи по всему миру.

МТСО является центральным офисом мобильной связи. В нем размещаются центр коммутации связи (MSC), полевые контрольные и ретрансляционные станции для переключения вызовов с сотовых станций на центральные офисы проводной связи (PSTN).

Термин «сотовый сайт» используется для обозначения физического местоположения радиооборудования, которое обеспечивает покрытие в ячейке. Список аппаратного обеспечения, расположенного на сотовой станции, включает источники питания, интерфейсное оборудование, радиочастотные передатчики и приемники и антенные системы.

Читать еще:  Зарядное imax b6 инструкция. Зарядное устройство imax b6

Мобильный абонентский блок состоит из блока управления и приемопередатчика, который передает и принимает радиопередачи в и из сотового узла. Доступны три типа MSU:

  • Мобильный телефон (типичная мощность передачи 4,0 Вт).
  • Портативный (типичная мощность передачи 0,6 Вт).
  • Транспортабельный (типичная мощность передачи составляет 1,6 Вт).

Вредоносность вышек сотовой связи

Сотовая связь – это большой прорыв в науке и технике своего времени, который не обошелся без последствий. Индустрия сотовой связи продолжает утверждать, что вышки связи не представляют опасности для здоровья, но в наши дни все меньше людей верят в это.

Вредны ли вышки сотовой связи? К сожалению, правильный ответ – да. Микроволны могут влиять на электромагнитные поля вашего тела, вызывая множество потенциальных проблем со здоровьем:

  1. Головные боли.
  2. Потеря памяти.
  3. Сердечно-сосудистый стресс.
  4. Низкое количество сперматозоидов.
  5. Врожденные дефекты.
  6. Рак.

Существуют убедительные доказательства того, что электромагнитное излучение вышек наносит вред здоровью.

Пример: исследование влияния клеточной башни на стадо молочного скота было проведено правительством штата Бавария в Германии, результаты опубликованы в 1998 году. Возведение башни вызвало неблагоприятные последствия для здоровья, что привело к ощутимому падению надоя. Переезд крупного рогатого скота восстановил надой молока. Перемещение их обратно на исходное пастбище воссоздало проблему.

Сотовая связь в России

Из 100 возможных кодов сотовой связи России задействованы 79 и свободен 21. Свободные коды находятся в резерве и не принадлежат пока ни одному оператору.

В РФ зарегистрировано более 80 компаний сотовой связи, предоставляющих свои услуги на территории страны. Мобильные операторы имеют телефонные коды в формате 9хх. Телефоны операторов сотовой связи десятизначные и начинаются с +79хх или с 89xx.

К самым крупным операторам относятся: МТС (“Мобильные ТелеСистемы”), “Билайн” (“Вымпел-Коммуникации”), “МегаФон”, “Теле2” (Т2-Мобайл). Операторам “большой тройки” (МТС, “Билайн” и “МегаФон”) принадлежат целые серии номеров.

Как работает мобильная связь: ликбез

Мобильным телефоном пользуется порядка 90% всех живущих в России граждан. Но мало кто из них задумывался – как же все это работает? Правда ли, что сотовая связь работает на самом деле по проводам? Наш корреспондент нашел ответы на эти и некоторые другие вопросы.

Немного грустно, что подавляющее большинство людей на вопрос: «Как работает сотовая связь?», отвечают «по воздуху» или вообще – «не знаю».

В продолжение этой темы, у меня вышел один забавный разговор с другом на тему работы мобильной связи. Случилось это аккурат за пару дней до отмечаемого всеми связистами и телекомщиками праздника «Дня радио». Так уж сложилось, что в силу своей ярой жизненной позиции, мой друг считал, что мобильная связь работает вообще без проводов через спутник. Исключительно за счет радиоволн. Сначала у меня не получалось переубедить его. Но после непродолжительной беседы все встало на свои места.

После этой дружеской «лекции» появилась идея написать простым языком о том, как работает сотовая связь. Все как есть.

Когда вы набираете номер и начинаете звонить, ну, или вам кто-нибудь звонит, то ваш мобильный телефон по радиоканалу связывается с одной из антенн ближайшей базовой станции. Где же находятся эти базовые станции, спросите вы?

Обратите внимание на промышленные здания, городские высотки и специальные вышки. На них и располагаются большие серые прямоугольные блоки с торчащими антеннами разных форм. Но антенны эти не телевизионные и не спутниковые, а приемо-передающие операторов сотовой связи. Они направлены в разные стороны, чтобы обеспечить связью абонентов со всех сторон. Ведь мы же не знаем, откуда будет поступать сигнал и куда занесет «горе-абонента» с телефонной трубкой? На профессиональном жаргоне антенны также называют «секторами». Как правило, они устанавливаются от одной до двенадцати.

От антенны сигнал по кабелю передается непосредственно в управляющий блок станции. Вместе они и образуют базовую станцию [антенны и управляющий блок]. Несколько базовых станций, чьи антенны обслуживают отдельную территорию, например, район города или небольшой населенный пункт, подсоединены к специальному блоку – контроллеру. К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру» – коммутатору. Коммутатор обеспечивает выход и вход сигналов на городские телефонные линии, на других операторов сотовой связи, а также операторов междугородней и международной связи.

В небольших сетях используется только один коммутатор, в более крупных, обслуживающих сразу более миллиона абонентов, могут использоваться два, три и более коммутаторов, объединенных между собой опять-таки проводами.

Зачем же такая сложность? Спросят читатели. Казалось бы, можно антенны просто подключить к коммутатору и все будет работать. А тут базовые станции, коммутаторы, куча кабелей… Но, не все так просто.

Когда человек передвигается по улице пешком или идет на автомобиле, поезде и т.д. и при этом еще и разговаривает по телефону, важно обеспечить непрерывность связи. Связисты процесс эстафетной передачи обслуживания в мобильных сетях называют термином «handover». Необходимо вовремя переключать телефон абонента из одной базовой станции на другую, от одного контроллера к другому и так далее.

Если бы базовые станции были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору. А ему «бедному» и так есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку на технические средства. Это снижает вероятность отказа оборудования и, как следствие, потери связи. Ведь все мы заинтересованы в бесперебойной связи, не так ли?

Итак, достигнув коммутатора, наш звонок переводится далее – на сеть другого оператора мобильной, городской междугородной и международной связи. Конечно же, это происходит по высокоскоростным кабельным каналам связи. Звонок поступает на коммутатор другого оператора. При этом последний «знает», на какой территории [в области действия, какого контроллера] сейчас находится нужный абонент. Коммутатор передает телефонный вызов конкретному контроллеру, в котором содержится информация, в зоне действия какой базовой станции находится адресат звонка. Контроллер посылает сигнал этой единственной базовой станции, а она в свою очередь «опрашивает», то есть вызывает мобильный телефон. Трубка начинает причудливо звонить.

Весь этот длинный и сложный процесс в реальности занимает 2-3 секунды!

Точно также происходят телефонные звонки в разные города России, Европы и мира. Для связи коммутаторов различных операторов связи используются высокоскоростные оптоволоконные каналы связи. Благодаря им сотни тысяч километров телефонный сигнал преодолевает за считанные секунды.

Спасибо великому Александру Попову за то, что он дал миру радио! Если бы не он, возможно, мы бы сейчас были лишены многих благ цивилизации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: