0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кулеры для процессоров high-end класса. Big Typhoon VP и Xigmatek Achilles — борцы за трон суперкулеров Методика проведения тестирования

Big Typhoon VP и Xigmatek Achilles — борцы за трон суперкулеров

Тестовый стенд и тестирование

Методика проведения тестирования

Любые исследования были бы немыслимы без строгого соответствия перечню правил, которых необходимо придерживаться при проведении тестирований любых систем охлаждения для процессоров. Итак, список основных положений методики тестирования:

Все тестирования воздушных систем охлаждения проводятся в обычном помещении, без использования термошкафа, что максимально приближает получаемые результаты к тем, что могут быть у большинства пользователей. Тестирование может проводиться как при использовании открытого стенда, так и в корпусе. При этом соответствующая информация присутствует на графиках с результатами.

Основой для любого сравнения является аналогичность условий. Поэтому тестирование кулеров проводится всегда в один день, т.к. на следующий день комнатная температура может значительно измениться. Кроме того, тестирования начинаются лишь после достаточно долгого прогрева системы и полной стабилизации температуры в помещении. После этого двери и окна уже не открываются, что обеспечивает стабильность условий.

Перед основным запуском программы для нагрева кулер некоторое время прогревается в системе. Лишь по завершении этой операции возможно начало тестирования. Основой для результатов является максимальная температура, которая была достигнута в ходе нагрева. После этого нагрузка прекращается, и система находится в состоянии простоя. Лишь по достижении стабильной минимальной температуры этот показатель снимается.

Все данные о температурных показателях процессора берутся с соответствующего датчика материнской платы. Множество проводимых тестовых исследований наглядно показывает, что такому методу можно доверять, т. к. выводимые значения достаточно близки к реальным. В качестве тестовой материнской платы используется продукт от компании ASUS, модель P5B-Deluxe. Информация об этой плате также внесена в конфигурацию тестового стенда, описанного выше.

Вторым источником информации для нас являются специальные термопары. Всего в системе их используется две. Одна отвечает за выведение информации о температуре в корпусе. Это очень важно, ведь мы должны знать о любых колебаниях условий тестирования и стараться поддерживать их на одном уровне. Вторая термопара установлена на один из конденсаторов системы питания материнской платы. Опыты показали, что все конденсаторы имеют близкие температуры, так что вывода информации хотя бы об одном из них вполне достаточно для того, чтобы узнать уровень эффективности охлаждения зоны около сокета.

Ни для кого не секрет, что большинство производителей кладет вместе со своей продукцией фирменные термоинтерфейсы. Зачастую они обладают достойным уровнем качества и, соответственно, на практике могут позволять добиваться отличного уровня эффективности, однако для сравнения кулеров нами используется всегда один конкретный термоинтерфейс. Ранее в качестве такой термопасты выступал отечественный продукт производства «Химтек» — КПТ-8. Однако тестовые исследования показали, что использование данного термоинтерфейса не позволяет максимально объективно судить об эффективности того или иного продукта. Поэтому на данный момент используется термопаста от компании Arctic Cooling — MX-2.

Исследования также показывают, что у многих термоинтерфейсов с течением времени могут изменяться те или иные свойства. Таким образом, эффективность может либо улучшаться, либо ухудшаться. Для того, чтобы подобные изменения не влияли на сравниваемые показатели разных кулеров, при любой манипуляции с кулером (смена платформы в ходе тестирования: переход от открытого стенда к варианту с использованием корпуса) термоинтерфейс наносится вновь. Это приводит к тому, что во время тестирования всех систем охлаждения термоинтерфейс остается свежим и, значит, обладает одинаковыми свойствами. Кроме того, снятие термопасты осуществляется с помощью спирта, что приводит к полному очищению крышки процессора. Таким образом, достигается большая «чистота» сравнения.

Еще одним моментом, который может повлиять на объективность сравнения продуктов, является то, что разные производители используют различные вентиляторы для своей продукции. Соответственно, эти вентиляторы могут отличаться не только по уровню эффективности, но и по уровню шума. Таким образом, для уравнения условий мы используем несколько режимов тестирования тех или иных кулеров. Обычно при использовании продуктом уровня оборотов в диапазоне от 1300 до 2000 об/мин нами тестируются первый и второй случай. Если же даже на минимальных оборотах данный продукт оказывается объективно более шумным, чем аналоги на сопоставимых оборотах, то находится тот уровень оборотов, на котором уровень шума будет сопоставим с аналогами. При этом кулер будет тестироваться не в двух, а в трех режимах. А именно — на найденном самом тихом уровне оборотов, на 1300 об/мин и на 2000 об/мин. Конечно же, есть определенные исключения, когда в рамках конкретного исследования необходимо провести более объемное изучение. В этом случае могут использоваться и другие режимы. В некоторых случаях мы, напротив, используем лишь один режим. Однако выводы о кулере строятся именно на основе сочетания шума и эффективности.

Описанный выше случай относится к кулерам, конструктив которых не позволяет менять вентилятор. Однако многие кулеры башенного типа, а также и другие решения позволяют довольно легко менять вентилятор на них. Поэтому часто мы можем устанавливать более эффективные вентиляторы. Кроме того, если конструктив кулера позволяет установку двух вентиляторов, данная манипуляция также проводится. Однако в зависимости от характера тестирования и количества участников описанные выше тезисы могут быть несколько скорректированы в рамках конкретного исследования.

В течение некоторого времени утилита, используемая для нагрева процессоров, менялась. Основной причиной для этого стало то, что со временем выходили программы, способные значительно эффективнее нагревать процессоры, нежели их предшественницы. Конечно же, в этом случае наш выбор при тестирования падал именно на них. На данный момент нами используется несколько утилит. Для процессоров производства Intel, в частности, поколения Core, применяется утилита Intel Thermal Analysis Tool.

Согласно нашим наблюдениям, данной программе удается создать самый нетипичный уровень нагрева, что позволяет в большей степени раскрыться тем или иным продуктам. При этом используется режим загрузки обоих ядер процессора на 100%. На данный момент последняя версия утилиты — 2.05.

Однако для процессоров AMD необходимо использовать другой инструмент нагрева, в связи с чем ставшая уже классической утилита S&M подходит как нельзя лучше. Она осуществляет качественный, нетипичный для любых других утилит нагрев. Кроме того, обладает целым рядом других полезных функций, среди которых наиболее важной для нас является вывод информации о температуре, в том числе и на графике в реальном времени. На данный момент используется версия утилиты 1.9.0a.

Читать еще:  Как поменять насадку на болгарке. Как поменять диск с помощью ключа для УШМ и без него? Основные виды применения УШМ

* Описанные выше положения методики относятся лишь к тестированию систем охлаждения для процессоров. В случае других систем охлаждения используются соответствующие правила и инструменты исследования.

Результаты тестирования

Сегодня в исследовании принимает участие нестандартное решение — Big Typhoon VP. Поэтому для того чтобы всесторонне изучить данный продукт, одновременно сравнив его с аналогами, мы снимали данные по трем параметрам: температура процессора, элементов питания материнской платы и видеочипа видеокарты.

Результаты получились довольно спорными. Причина тому — невероятная плотность. Говорить о победителях, мягко говоря, сложно. Номинальным лидером мы можем считать Xigmatek Achilles. Данный кулер с преимуществом в 0,2 градуса смог превзойти Big Typhoon VX. Но сами понимаете, все это погрешность измерения. Фактически же все продукты показали почти равный уровень эффективности. Однако тут вступает в силу уже другой момент — уровень оборотов. «Победитель» работает не в пример тише Тайфуна, серьезно шумящего при 2000 об/мин. А вот при снижении скорости вращения крыльчатки до 1300 об/мин продукт Thermaltake становится относительным аутсайдером. Почему относительным? Потому что 4 градуса — это не критичное отставание. Если же говорить об очной ставке между двумя Тайфунами, то тут ничья, чего и следовало ожидать. Конечно, теоретически дополнительный вентилятор мог снизить температуру в самом корпусе и этим помочь себе. Но этого не произошло. Мы имеем абсолютно идентичный уровень эффективности. Разница — в пределах погрешности.

Наконец, снова взглянем на результаты Achilles. Да, конечно, данное решение вполне можно считать победителем, учитывая уровень оборотов и относительно тихий режим работы. Однако заметьте, преимущество над «Красным скорпионом» составляет какие-то 1,5 градуса. Это довольно странно, т.к. в новинке переработан дизайн радиатора, добавлена тепловая трубка, причем, учитывая её диаметр, это должно было дать приличный бонус в эффективности. В чем же причина? А причина оказалась на поверхности. После теста мы изучили основание кулера, в частности, отпечаток пасты на процессоре и трубках, и обратили внимание, что одна из них почти не контактировала с теплораспределителем. Иначе говоря, полностью отработали только три тепловых трубки. Четвертая выполняла свою функцию с большими потерями в эффективности. В результате, несложно понять, почему новинке не удалось однозначно утвердиться в качестве лидера. Что это — частный случай, или же такая проблема есть и у других экземпляров? Сказать сложно, в конце концов, это один из первых экземпляров кулера. Такие промахи довольно часто бывают у производителей. Мы же не преминем сообщить об этой проблеме в Xigmatek, чтобы инженеры обратили свое внимание на данный аспект.

А теперь посмотрим, как проявили себя кулеры в отношении охлаждения элементов платы. Здесь Ахиллес оказывается в аутсайдерах. Объясняется это просто. Радиатор относительно прошлых моделей стал заметно толще. Воздух с трудом проходит через него, и, соответственно, обдув платы серьезно затруднен. Отсюда проигрыш не только кулерам от Thermaltake, но и предыдущей модели — S1283.

Тайфуны же не показали ничего особенного. М достаточно давно говорили о том, что отличный обдув околосокетной зоны данным кулером — это миф. Взгляните на него, он имеет очень серьезную высоту. А теперь попробуйте во время работы расположить руку в районе элементов платы. Вы вряд ли почувствуете серьезный воздушный поток. Конечно, по сравнению с некоторыми продуктами башенного типа имеется некоторое преимущество, особенно, если сравнивать с массивным Scythe Mugen. Однако компактные башни вроде Xigmatek S1283 не уступают в эффективности охлаждения зоны около процессора.

Наконец, обратим свои взоры на график температуры чипа видеокарты Radeon 3870 X2. Мы неспроста использовали именно эту карту. Она обладает серьезным тепловыделением. Дополнительный обдув ей явно не помешает. Однако за её охлаждение отвечает турбина, черпающая холодный воздух в области жесткого диска. Не трудно понять, что вентилятор, расположенный где-то в середине системы охлаждения карты, почти ничего не даст. Разве что температура PCB немного снизится. К сожалению, Riva Tuner такой информации не выводит, и нам пришлось довольствоваться показателями температуры GPU-платы. Как видите, разница невелика, правда, учитывайте, что карта работала в простое при минимальных оборотах турбины.

В результате, дополнительный элемент в виде вентилятора дает малую прибавку в эффективности обдува. Конечно, в случае другой видеокарты все могло быть иначе. Однако не проще ли воспользоваться штатными возможностями самого корпуса, задействовав площадки для вентиляторов? Этого, на наш взгляд, будет вполне достаточно. В Thermaltake же явно поспешили с выпуском нового продукта, переоценив его потенциал. На данный момент Big Typhoon VX продается по не такой уж маленькой цене. Не будет неожиданностью, если модификация VP в этом его серьезно переплюнет. Только вот зачем она будет нужна еще и при большей цене, когда ничем не отличается?

Заключение

Новинки оставили весьма неоднозначное впечатление. Скажем прямо, производителям нужно было дважды подумать, прежде чем выпускать их. С одной стороны, они, конечно же, обладают высокой эффективностью. В этом плане Ахиллес и обновленный Тайфун могут дать фору многим продуктам от сторонних компаний. Только вот загвоздка в том, что их предшественники располагали такими же способностями. Особенно это касается Big Typhoon VP. Данное решение откровенно разочаровало. Эффективность ничем не отличается от стандартной модификации, а габариты кулера прямо-таки неприличные. Xigmatek Achilles также радует и огорчает одновременно. В нем, безусловно, заложены интересные идеи. Это касается как четырех тепловых трубок, так и измененного дизайна радиатора. Однако промахи в качестве (в данном случае это касается нашего экземпляра) не позволили раскрыться новинке в полной мере. В результате мы имеем минимальное преимущество над предыдущей моделью — Xigmatek S1283. Так что итог таков:

Thermaltake Big Typhoon VP — в целом, неплохой продукт, обладающий хорошей эффективностью и универсальностью в установке на различные платформы. Однако преимуществ над VX версией нет, так что особого смысла в приобретении именно модификации VP нет.

Xigmatek Achilles-S1284 — безусловно, интересное решение. Инженеры компании спроектировали достаточно продуманную конструкцию радиатора, при этом включив в неё сразу четыре медные тепловые трубки диаметром 8 мм каждая. Кроме того, кулер наделен приятным внешним видом, благодаря присутствию в покрытии трубок никеля и установке эффектного вентилятора с подсветкой. Одним словом, самый настоящий суперкулер. Однако для полного раскрытия потенциала не хватило качества изготовления. Одна из трубок почти не контактировала с основанием, что серьезно сказалось на эффективности. Кроме того, расстроило качество полировки подошвы. В общем, компании есть над чем работать, иначе выходит чемпион с «Ахиллесовой пятой».

Читать еще:  Очистка компьютера от следов интернета. Программа PrivaZer для очистки компьютера во благо производительности и с целью заметания следов активности

Методика тестирования процессорных охладителей образца 2020 года

Оглавление

Предисловие

Первым и очевидным этапом тестирования кулеров является измерение температуры процессора во время его максимальной загрузки. В случае пассивных кулеров этим можно было бы и ограничиться. Однако кулеры с активными охлаждающими элементами — вентилятор(ы) у воздушных кулеров плюс помпа у систем жидкостного охлаждения — шумят. Поэтому на втором этапе мы измеряем уровень шума при работе кулера в различных режимах. Соответственно, в этих же режимах измеряется и температура нагруженного процессора, а также его реальное потребление. Чтобы полученные результаты можно было переносить на другие условия, а именно на различные сочетания температуры окружающего воздуха и максимально допустимой температуры процессора, мы рассчитываем полное термическое сопротивление системы процессор—кулер. Это позволяет определить максимально допустимую мощность, потребляемую процессором, для данного уровня шума. Для примера в статье мы приводим такую зависимость для условий нагретого до 44 °C воздуха и 80 °C максимальной температуры процессора. Кроме того, в статье приведена ссылка на страницу с интерактивными графиками, где читатель может ввести свои значения для данных параметров и увидеть полученные значения максимальной мощности, а также сравнить выбранный кулер с другими, протестированными в аналогичных условиях. К сожалению, результаты зависят от типа используемого в тестах процессора и (в меньшей степени) даже от конкретного экземпляра процессора, поэтому полной переносимости результатов мы не получаем, но хотя бы можно сравнивать кулеры между собой, если они протестированы с использованием одного и того же процессора.

Условия и инструменты тестирования

Исследуемая модель кулера (вернее, его вентилятор(ы)) подключается к внешнему ШИМ-контроллеру и управляемому блоку питания. Применяемый ШИМ-контроллер позволяет задавать коэффициент заполнения (КЗ) в пределах от 0 до 100% с частотой 25 кГц и амплитудой 5 В. Напряжение питания регулируется в диапазоне от 0 до 15 В (в тестах — только до 12 В). Одновременно регистрируются реальное напряжение (отличается от задаваемого не более чем на 0,1 В), ток, потребляемый вентилятором, скорость вращения вентилятора (снимаются показания встроенного в вентилятор датчика) и температура воздуха (выносной датчик). Для указанных параметров оператору демонстрируются текущее значение, минимальное, максимальное и среднее за период текущего цикла регистрации. По команде эти данные сохраняются в файл или копируются в буфер обмена.

В тестах кулеров преимущественно используется управление с помощью ШИМ, если ШИМ не поддерживается, то изменяется напряжение питания вентилятора. Иногда в качестве дополнительного теста используется комбинированный способ управления, как с помощью ШИМ, так и напряжением, который в некоторых случаях позволяет еще больше снизить скорость вращения вентилятора.

В случае систем жидкостного охлаждения тестирование под нагрузкой, как правило, проводится при максимальных оборотах помпы (питание 12 В, КЗ = 100%, или максимальные обороты задаются в управляющем ПО). Если в этих условиях шум только от помпы превышает 25 дБА, то тестирование, основное или дополнительное, проводится на более низких оборотах помпы, на которых уровень шума существенно ниже 25 дБА, чтобы общий шум от системы в режимах с низкой скоростью вращения вентиляторов был не выше 25 дБА. В некоторых случаях проводятся замеры шума только от помпы для нескольких значений скорости вращения помпы.

Увы, отказаться от использования процессора как основного «нагревательного» элемента нельзя в силу того, что реализовать управляемую модель процессора с изменяемыми параметрами достаточно сложно, особенно с учетом разнообразия типов процессорных разъемов и видов креплений для установки кулера, а также особенностей компоновки кристаллов процессора и их площади. Поэтому первоначально для тестирования процессорных охладителей, поддерживающих установку на процессоры Intel с разъемом LGA2011, мы использовали стенд, состоящий из системной платы ASRock X99 Taichi и процессора Intel Core i7-6900K. У процессора отключен режим Turbo Boost, и для всех ядер выставлен множитель 35, то есть все ядра работают на фиксированной частоте 3,5 ГГц.

На настоящий момент такая система является не очень актуальной, поэтому на момент публикации данной методики тесты для кулеров с поддержкой LGA2011 / LGA2066 мы выполняем с процессором Intel Core i9-7980XE на ядре Skylake-X (HCC) с использованием материнской платы ASRock X299 Taichi. Результаты тестов показывают, что процессор Intel Core i9-7980XE охлаждается гораздо лучше, чем Intel Core i7-6900K, то есть первый греется немного больше, но потребляет гораздо больше энергии, чем второй. Данный факт можно объяснить разницей в площади кристалла, у Intel Core i9-7980XE (Skylake-X (HCC)) она значительно больше: 484 мм², тогда как у Intel Core i7-6900K (Broadwell-E) — всего 246 мм². Отрицательным моментом является то, что при переходе на тестирование систем охлаждения с использованием Intel Core i9-7980XE не сохраняется преемственность, то есть результаты нельзя сравнивать с теми, что получены на процессоре Intel Core i7-6900K. В тестах все ядра процессора Intel Core i9-7980XE работают на фиксированной частоте 2,6 ГГц (множитель 26), 2,8 ГГц (множитель 28) или 3,2 ГГц (множитель 32).

Для тестирования процессорных охладителей, поддерживающих установку на процессоры AMD с разъемом AM4, мы используем стенд, состоящий из системной платы Asus Crosshair VI Hero и процессора AMD Ryzen 7 1800X. Процессор имеет функцию, автоматически снижающую частоту в случае сильного повышения температуры, которая очень сильно мешает нам при тестировании кулеров. Эта функция отключается при использовании некоторых нестандартных множителей. Также этот процессор под нагрузкой имеет высокое потребление и, соответственно, тепловыделение, с которым кулеры слабой производительности справиться не могут. В итоге для мощных кулеров мы устанавливаем множитель чуть выше стандартного, а именно 36,25, то есть ядра процессора работают на частоте 3,625 ГГц, а в случае слабых кулеров множитель равен 25, и частота составляет 2,5 ГГц.

Для кулеров, способных охлаждать процессоры AMD Ryzen Threadripper, первоначально мы использовали процессор AMD Ryzen Threadripper 1920X. Тесты выполнялись при фиксированной частоте ядер 3,7 ГГц. Однако этот процессор отличается не очень большим потреблением (для своей платформы) и крайне большой нестабильностью в показаниях датчика температуры. В итоге мы от него отказались и тестирование стали проводить на процессоре AMD Ryzen Threadripper 2990WX. В тестах используется указанный процессор и материнская плата Asus ROG Zenith Extreme. Все ядра процессора работают на фиксированной частоте 3,5 ГГц (множитель 35).

Читать еще:  Vk scripts скрипты. PHP Скрипты Vk

В качестве дополнительного теста мы иногда проверяем, как кулер справится с охлаждением процессора AMD Ryzen 9 3950X. Процессоры семейства Ryzen 9 являются сборками из трех кристаллов под одной крышкой. С одной стороны, увеличение площади, с которой снимается тепло, может улучшить охлаждающую способность кулера, но с другой — конструкция большинства кулеров оптимизирована для лучшего охлаждения именно центральной области процессора. Видимо, из-за этих особенностей есть мнение, что подобрать воздушный кулер для топовых процессоров Ryzen нового поколения не очень просто. В тестах используется указанный процессор и материнская плата ASRock X570 Taichi. Все ядра процессора работают на фиксированной частоте 3,6 ГГц (множитель 36). Для установки этой частоты используется программа A-Tuning производителя системной платы. В качестве нагрузочного теста применялась программа powerMax (с использованием системы команд AVX).

Температура окружающего воздуха в ходе тестирования поддерживается на уровне примерно 24 °C. В теплое время — с помощью кондиционера с инверторным компрессором, позволяющим минимизировать перепады температуры. В холодное время обычно достаточно батарей центрального отопления и периодического проветривания помещения. Для лучшего выравнивания температуры в помещении и, в частности, в области тестируемого охладителя мы в дополнение к вентиляторам кондиционера применяем бытовой вентилятор, работающий на минимальной скорости и направленный на стенд с расстояния примерно в 1,3 м. Чтобы учесть неизбежные колебания температуры окружающего стенд воздуха, для каждого измерения из температуры процессора мы вычитали реальную температуру воздуха, и, чтобы удобнее было сравнивать с предыдущими результатами тестирования кулеров, прибавляли значение базовой температуры в 24 °C.

Первоначально нагрузку на процессор мы создавали с помощью программы Prime95 (версии 28.4). Она нагружает процессор сильнее, чем тест Stress FPU из пакета AIDA64, но при работе Prime95 есть короткие провалы в нагрузке, что осложняет точное измерение потребления. Поэтому от этой программы мы отказались в пользу теста Stress FPU из пакета AIDA64. Также в ряде случаев для нагрузки мы используем программу powerMax, в которой выбираем вариант теста, основанного на системе команд AVX.

Температура процессора контролируется с помощью утилиты System Stability Test из пакета AIDA64. Поскольку в случае многоядерных процессоров утилита показывает температуру для каждого из ядер, за температуру процессора берется среднее арифметическое значение от средних значений температуры по всем ядрам на период измерения. Первоначально вентилятор(ы) тестируемого охладителя включается в режим максимальной производительности и процессор выдерживается под максимальной нагрузкой не менее 30 минут, чего достаточно для стабилизации температуры. Усреднение показаний проводится 30 секунд, затем снижается скорость вращения вентилятора кулера, обычно снижением КЗ ШИМ на 10%, 5 минут дается на стабилизацию температуры, 30 секунд снимаются показания, и так далее, до тех пор пока система не отключится от перегрева, процессор не достигнет критической температуры и не перейдет в режим пропуска тактов или вентилятор не остановится. Режим работы помпы в случае систем жидкостного охлаждения оговаривается отдельно, обычно это режим максимальной производительности на время всего теста. Специальные программы производителей систем охлаждения по возможности не используются или используются только для оценки их работы.

Потребление процессора определяется с помощью замера силы тока по одному или двум дополнительным разъемам 12 В на мат. плате. Суммарная и усредненная за 10 секунд сила тока умножается на усредненное за 10 секунд значение напряжения по шине 12 В. Под нагрузкой с помощью описанных выше тестов потребление по шинам с другим напряжением и по другим разъемам на материнской плате обычно мало отличается от режима простоя, поэтому в тестах не учитывается. В таблице ниже для примера приведены значения потребляемой мощности для различных вариантов сочетаний процессора, вида нагрузки, частоты работы и температуры процессора.

XIGMATEK HDT-D1284 и Scythe ZIPANG: новые кулеры для охлаждения центральных процессоров

Страницы материала

Предисловие

Не кажется ли вам, что потенциал систем воздушного охлаждения для центральных процессоров на сегодняшний день исчерпан? Мы регулярно тестируем новые кулеры, многие из которых демонстрируют отличную эффективность охлаждения в том числе и сильно разогнанных процессоров, справляясь даже с горячими четырёхъядерными «камнями» на ядре Kentsfield. Но вот реального прорыва в этой сфере уже довольно давно не происходит. Взять хотя бы не так давно протестированные кулеры Ice Hammer с технологией HTD. Конечно же, эти новинки оказались исключительно эффективными для своей стоимости, но вновь не превзошли Thermalright Ultra-120 eXtreme. То есть организовать высокоэффективное охлаждение процессора теперь стало дешевле, доступнее, легче и проще, но не более того. Возможно, кому-то достаточно и этих факторов, однако мне, как человеку регулярно тестирующему новые кулеры, хотелось бы действительно прорыва в этой области, как по снижению пиковой температуры процессора, так и по росту его оверклокерского потенциала, а не полутораградусного преимущества, либо такого же проигрыша общепризнанным лидерам, как это происходит в последние год-полтора.

Так куда же двигаться дальше известным брендам кулеростроения в таком случае? Ещё больше увеличивать диаметр трубок, наращивать габариты кулеров, оснащать двумя или даже тремя вентиляторами? Делать радиаторы из благородных металлов, устанавливать всевозможные моддинговые «примочки» или выпускать ограниченные юбилейные серии? Как же ещё повысить эффективность и привлечь потенциального покупателя? Вопрос непростой. Как мы с вами могли совсем недавно убедиться, для разгона и охлаждения новых процессоров Intel, выпущенных по 45-нм техпроцессу, вовсе не требуются дорогие суперкулеры. Посмотрите, какие продукты представляет на CeBIT 2008 всем известная корейская компания Zalman. Поэтому, как мне кажется, дальнейшее развитие воздушных систем охлаждения в ближайшие год-полтора, будет сконцентрировано на уменьшении их габаритов, снижении уровня шума и стоимости, без потери в эффективности. На сегодняшний день оснащать разогнанные 45-нм процессоры суперкулерами насущной необходимости нет.

Тем не менее, производители продолжают анонсировать и выпускать на рынок новые кулеры, претендующие на лидерство среди воздушных систем охлаждения. И сегодня мы с вами рассмотрим и протестируем две новинки от компаний XIGMATEK и Scythe – кулеры HDT-D1284 и ZIPANG:

реклама

Новые системы охлаждения имеют принципиально схожую конструкцию (вентилятор установлен над радиатором), но при этом существенно отличаются друг от друга. В том числе и поэтому будет интересно сравнить новинки между собой и с уже всем известными суперкулерами по эксплуатационным свойствам, эффективности охлаждения и по уровню шума. Приступим.

1. Обзор новых систем охлаждения от XIGMATEK и Scythe

XIGMATEK HDT-D1284 (CAC-DXHH4-U03)

Новая система охлаждения от XIGMATEK поставляется в небольшой серой коробке, выполненной из непривычно тонкого картона.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector