0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Революционный прорыв: Емкость аккумуляторов вырастет в разы

Революционный прорыв: Емкость аккумуляторов вырастет в разы

Ученые из Стэнфордского университета в США, впервые смогли сконструировать надежный и эффективный аккумулятор с литиевым анодом. В будущем это позволит создавать более компактные, легкие, дешевые и энергоемкие перезаряжаемые источники питания, говорится в статье, опубликованной в журнале Nature Nanotechnology.

Стандартная конструкция аккумулятора включает три ключевых элемента: катод (отрицательный электрод), электролит и анод (положительный электрод).

Наиболее распространенные на сегодняшний день — литиево-ионные аккумуляторы, в которых переносчиком заряда выступает ион лития. При этом анод чаще всего изготавливают из графита.

Графит — самый популярный материал для анода, но не самый эффективный, рассказал профессор Стэнфордского университета по материаловедению и руководитель проекта И Цуй (Yi Cui). Более эффективным является литий.

«Из всех материалов, которые можно использовать для изготовления анода, литий обладает самым большим потенциалом, — рассказал ученый. — Он имеет малый вес и наиболее высокую энергетическую плотность. С ним вы можете получить больше мощности на единицу объема и веса — иными словами, создавать более легкие, компактные и мощные элементы питания». Цуй добавил, что, по его предположениям, литиевый анод способен в теории увеличить емкость батареи в 3-4 раза.

Проблема заключается в том, что, во-первых, литий быстро вступает в химическую реакцию с электролитом, и, во-вторых, при осаждении на литиевом аноде ионов лития он значительно увеличивается в размерах, что быстро ведет к деградации аккумулятора.


Ученые создали надежный и эффективный аккумулятор с анодом из лития

По словам руководителя проекта, различные ученые десятилетиями бились над решением этих проблем, которые его команде, наконец-таки, удалось решить с помощью одного дополнительного элемента — своеобразного защитного кожуха, окутывающего анод и представляющего собой сетку толщиной 20 нм из углеродных куполов. Эта сетка препятствует вступлению лития в реакцию с электролитом и является достаточно гибкой, чтобы растягиваться по мере расширения анода.

Как правило, что батарею можно отправлять в массовое производство, если ее кулоновская эффективность (относительный объем сохраняемого на аноде лития после цикла заряда-разряда) составляет 99,9% и больше и не снижается ниже этого значения продолжительное время.

До настоящего момента аккумуляторы с литиевым анодом, созданные в лабораторных условиях, показывали кулоновскую эффективность на уровне 96%. Причем она падала ниже 50% спустя всего лишь 100 циклов заряда-разряда. Исследователям же из Стэнфордского университета удалось достичь значения в 99%, которое сохранялось таким даже спустя 150 циклов.

«Разница между 99% и 96%, если речь идет об аккумуляторах, колоссальна, — заявил Цуй. — Да, мы не добились 99,9%, которые нам нужны. Но мы проделали важную работу и значительно приблизились к этой цифре. Мы продолжим научную работу, и я верю, что если нам удастся разработать новый электролит, литиевые аноды, в конечном счете, найдут широкое применение в аккумуляторах».

Японские стартапы обещают в 10 раз увеличить емкость АКБ

Одной из основных задач инженеров, трудящихся в сфере электромобилей, является увеличение емкости аккумуляторов. Несколько стартапов из Японии уже добились впечатляющих результатов. Nikkei рассказывает их истории.

3Dom — стартап, появившийся в Токийском столичном университете в 2014 году. Его основал профессор Киёси Канамура (Kiyoshi Kanamura). Изначально он трудился в одиночку, а затем создал команду, куда вошли инженеры из крупных компаний — производителей бытовой техники, таких как Panasonic, и автопроизводителей. Теперь под его руководством трудятся 70 специалистов.

В 2022 году 3Dom планирует начать коммерциализацию литий-металлических батарей, которые при сравнимых габаритах и весе позволят получить вдвое больше энергии, чем современные литий-ионные источники питания. Благодаря этому удастся существенно увеличить запас хода электромобилей.

Читать еще:  Включаем гостевой режим на Андроид-смартфоне

В настоящее время в большинстве литий-ионных аккумуляторов для отрицательных электродов используются углеродные материалы. Японская компания предлагает заменить их металлическим литием. Он позволяет значительно увеличить емкость, но склонен к коротким замыканиям и воспламенению.

Чтобы побороть негативную реакцию, компания разработала специальный сепаратор, который подавляет неравномерность химической реакции (именно она приводит к замыканию и воспламенению). Сепаратор имеет сферические отверстия диаметром несколько сотен нанометров, расположенные в идеальном порядке. Оптимальный размер и расположение отверстий обеспечивают равномерный поток ионов и равномерную химическую реакцию.

Сепаратор изготовлен из полиимида — термостойкого пластика, который не будет гореть даже при температуре 400 градусов Цельсия. В настоящее время 3Dom производит литий-ионные аккумуляторы в пригороде Сиэтла и планирует построить еще один завод в США, возможно, в следующем году.

Другой стартап, Azul Energy из города Сендай, фокусируется на производстве не всей батареи, а ее отдельных элементов. По словам его руководителя Хироши Ябу (Hiroshi Yabu), доцента Университета Тохоку, специальные катализаторы для батарей на основе кислорода и металлов позволят ускорить процесс разряда и увеличить общую емкость в 3-10 раз.

Правда, пока металл-воздушные батареи могут выдавать лишь небольшое количество электрического тока, что делает их непригодными для использования в электромобилях. Сегодня они применяются в основном в слуховых аппаратах. Но разработчики пытаются побороть и это ограничение, что в будущем позволит применять их в том числе в сфере транспорта.

Графеновый аккумулятор. Прорыв в создании устройств хранения энергии

В настоящее время потенциальных покупателей электромобилей зачастую пугает перспектива довольно небольшого пробега автомобиля от одной подзарядки и слишком долгий процесс заряда аккумуляторов. В самое ближайшее будущее все может очень сильно измениться и нас ждут весьма интересные девайсы способные заряжаться за несколько минут, а также графеновые электронные компоненты и другие наноматериалы.

Графеновые аккумуляторы окажут громадное влияние на все сферы повседневной жизни. Для примера, удельная емкость литий-ионного аккумулятора применяемого в настоящее время, составляет 200 Вт/ч на 1 кг веса. Графеновый аккумулятор такого же веса имеет удельную емкость 1000 Вт/ч. Очевидно, что графеновая аккумуляторная батарея установленная, например, в Tesla Model S способна увеличить пробег электромобиля с 334 км до 1013 км на одной подзарядке. Кроме всего прочего такие батареи можно зарядить менее чем за 10 минут. Конечно, чтобы достичь такой скорости заряда необходима мощная зарядная станция, но это уже не такая большая проблема.

Еще в декабре 2018 года индийская компания Log 9 Materials объявила, что работает над металлическими воздушно-воздушными батареями на основе графена, что в теории может даже привести к появлению электрических транспортных средств, работающих на воде. Металлические воздушные батареи используют металл в качестве анода, воздух (кислород) в качестве катода и воду в качестве электролита. В воздушном катоде батарей используется стержень графена. Поскольку кислород должен использоваться в качестве катода, катодный материал должен быть пористым, чтобы воздух мог проходить, свойство, в котором графен превосходит другие. Согласно Log 9 Materials, графен, используемый в электроде, способен увеличить эффективность батареи в пять раз при стоимости в одну треть.

Новые разработки графеновых аккумуляторов

Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков. Они считают, что будущее за графеновыми аккумуляторами.

Сравнительно недавно Graphenano, компания из Испании, продемонстрировала прототип графен-полимерного аккумулятора обладающего уникальной способностью – требуемое время его заряда в 3 раза меньше, чем для обыденных литий-ионных аккумуляторов. Конечно же успехи этой компании подхлестнули громадный интерес различных производителей, которые стали тотчас предвкушать все выгоды применения таких аккумуляторов.

В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей. Графеновые батареи менее громоздкие, чем их литий-ионные аналоги: масса графенового аккумулятора вдвое меньше массы литий-ионного. И что не маловажно, такие батареи не могут взорваться.

Читать еще:  Советы и хитрости IntelliJ IDEA: 2. Анализ зависимостей

В конце 2015 года Graphenano открыли завод площадью более 7000 квадратных метров по производству графен-полимерных аккумуляторов в испанском городе Екла, благодаря объединению усилий с группой химиков из Национального университета Кордовы и компанией Grabat Energy. Было создано специальное оборудование для обеспечения 20 сборочных линий на 80 миллионов ячеек. Эти аккумуляторы не будут производить газ и не будут пожароопасными, заявляют в Graphenano, даже короткое замыкание им не будет страшно. Полимер был сертифицирован при сотрудничестве с институтами Декра (Испания) и TUV (Германия).

Графен представляет собой слой атомов углерода толщиной в один атом, расположенный в гексагональной решетке (в виде шестиугольников). Это строительный блок углерода, но графен сам по себе является замечательным веществом, обладающим множеством удивительных свойств, которые постоянно дают ему название «чудо-материал».

Как улучшить характеристики существующих аккумуляторов

В области аккумуляторов обычные материалы для аккумуляторных электродов (и перспективные) значительно улучшаются при добавлении графена. Графеновая батарея может быть легкой, долговечной и подходящей для накопления энергии большой емкости, а также для сокращения времени зарядки. Это продлит срок службы батареи, что связано с количеством углерода, который нанесен на материал или добавлен к электродам для достижения проводимости, а графен добавляет проводимости, не требуя количества углерода, которое используется в обычных батареях.

Графен может улучшить такие свойства батареи, как плотность энергии и форму, различными способами. Так литий-ионные аккумуляторы (и другие типы аккумуляторных батарей) могут быть улучшены путем введения графена в анод аккумулятора и использования проводимости материала и характеристик большой площади поверхности для достижения морфологической оптимизации и производительности.

Также было обнаружено, что создание гибридных материалов также может быть полезным для улучшения качества батареи. Например, гибрид катализа оксида ванадия (VO2) и графена может быть использован на литий-ионных катодах и обеспечивает быструю зарядку и разрядку, а также большую стойкость цикла зарядки. В этом случае VO2 обладает высокой энергоемкостью, но плохой электрической проводимостью, что можно решить, используя графен в качестве своего рода структурной «основы», на которой можно присоединить VO2- создавая гибридный материал, который обладает как повышенной емкостью, так и превосходной проводимостью.

Исследователи ищут новые типы активного электродного материала, чтобы вывести батареи на новый уровень высокой производительности и долговечности и сделать их более подходящими для больших устройств. Наноструктурированные материалы ионно-литиевых батарей могут обеспечить хорошее решение. По последним данным исследователи из Венского университета и международные ученые разработали новый наноструктурированный анодный материал для ионно-литиевых батарей, который увеличивает емкость и срок службы батарей.

2D/3D нанокомпозит на основе смешанного оксида металла и графена, разработанный двумя учеными и их командами, как утверждается, серьезно улучшает электрохимические характеристики литий-ионных аккумуляторов. Основанный на смешанном мезопористом оксиде металла в сочетании с графеном, этот материал может обеспечить новый подход к более эффективному использованию батарей в больших устройствах, таких как электрические или гибридные транспортные средства. Новый электродный материал обеспечил значительно улучшенную удельную емкость с беспрецедентной обратимой циклической стабильностью в течение 3000 обратимых циклов зарядки и разрядки даже при очень высоких режимах тока до 1280 миллиампер. Для сравнения, современные литий-ионные аккумуляторы теряют свою эффективность после примерно 1000 циклов зарядки.

Финансовые проблемы реализации научных достижений

Проблема создания новых аккумуляторных батарей еще и в том, что сейчас исследованиями в области элементов питания занимается слишком много компаний. Проектов просто огромное количество — от «пенных» и жидких батарей до аккумуляторов с экзотическими соединениями в составе электролита. И явного лидера среди всех этих компаний нет. Особого энтузиазма такая ситуация не вызывает и среди инвесторов, которые не слишком охотно выделяют деньги на новые проекты.

Читать еще:  GrimeFighter от AVAST - программа очистки и оптимизации компьютера (

А денег требуется много. «Для того, чтобы создать небольшую промышленную линию по производству аккумуляторов, создаваемых по новым технологиям, требуется около $500 млн. И даже, если бы перспективный аккумулятор был создан, перевести научную работу в сферу коммерции не так просто. Разработчики мобильных устройств или производители электромобилей будут тестировать новые батареи годами, прежде, чем принять решение. Инвестиции за это время не окупятся, а компания-разработчик будет убыточной. Ученые утверждают, что наладить промышленную линию стоимостью в $500 млн. сложно, особенно, если бюджет на год составляет $5 млн.

И даже в том случае, когда новая технология попадет на рынок, производителю аккумуляторов нового типа придется пережить нелегкий период адаптации и поиска покупателей. Но пока что до этого этапа никто не доходил. Так, компании Leyden Energy и A123 Systems, разработавшие новые, вполне перспективные технологии, так и не вышли на рынок. Им просто не хватило для этого денег. Еще два перспективных «энергетических» стартапа, Seeo и Sakti3, были куплены другими компаниями. Причем суммы этих двух сделок были гораздо ниже того, на что рассчитывали первые инвесторы компаний.

Крупнейшие производители электроники, Samsung, LG и Panasonic, заинтересованы больше в совершенствовании текущих своих продуктов и увеличении числа их функций, чем в получении батарей нового типа. Поэтому пока что продолжается процесс оптимизации Li-Ion батарей, созданных еще в 70-х годах прошлого века. Остается надеяться, что у графеновых аккумуляторов все же получится разорвать порочный круг.

Что дальше?

Сегодня на исследования графена выделено несколько миллиардов долларов, и по прогнозам ученых, этот материал сможет заменить собою кремний в полупроводниковой промышленности. Графен несомненно перевернет мир технологий, в том числе и созданием новых аккумуляторных батарей в ближайшие годы, не в последнюю очередь еще и потому, что он недорог в производстве, и очень распространен в природе. Каждая из стран имеет его в изобилии.

Аккумуляторы на основе графена быстро становятся сопоставимыми по эффективности с традиционными твердотельными аккумуляторами. Они все время продвигаются, и скоро они превзойдут своих твердотельных предшественников. Дополнительные преимущества, связанные с присутствием графена в электродах, могут быть полезны, даже если эффективность не так высока. Для батарей, которые обладают аналогичной эффективностью, графеновые батареи являются идеальным выбором, они начали набирать обороты на коммерческом рынке. Ожидается, что мировой рынок графеновых аккумуляторов к 2022 году достигнет 115 миллионов долларов, увеличившись в среднем на 38,4% в течение прогнозируемого периода с рынком с доходом около 38% ».

Удивительные свойства графена

Графен является самым тонким материалом, известным человеку, толщиной в один атом, а также невероятно прочным — примерно в 200 раз прочнее стали. Кроме того, графен является отличным проводником тепла и электричества и обладает интересными способностями поглощения света. В целом графен характеризуется как материал с наивысшей подвижностью электронов среди всех известных материалов. Графеновый слой можно представить, как одну молекулу в которой электроны без преград передвигаются между ее границами – таким образом графеновый проводник способен проводить электричество практически без потерь.

Графен – легкий, он весит всего 0,77 миллиграмма на квадратный метр. Поскольку это один 2D-лист, он имеет самую высокую площадь поверхности из всех материалов.

Листы графена являются гибкими, и фактически графен является наиболее растяжимым кристаллом — вы можете растянуть его до 20% от его первоначального размера, не разбивая его. Наконец, идеальный графен также очень непроницаем, и даже атомы гелия не могут пройти через него.

Он также считается экологически чистым и устойчивым, с неограниченными возможностями для многочисленных применений. Это действительно материал, который может изменить мир с неограниченным потенциалом для интеграции практически в любую отрасль.

Когда листы графена предоставлены сами себе, они будут складываться и образовывать графит, который является наиболее стабильной трехмерной формой углерода при нормальных условиях.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector