7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сети интернет главные из которых. Компьютерные сети: виды, функции, топология

Разбираемся с основными топологиями компьютерных (локальных) сетей

В математике топология это область геометрии для изучения фигур, которые непрерывно изменяясь сохраняют основное свойство. Раньше её называли «Теорией точечных множеств» или «Анализом положения». Компьютерщики заимствовали название и охарактеризовали им размещение компьютеров и периферийных устройств, и системы взаимодействия между ними.

Что понимается под топологией локальной сети

Программирование и построение компьютерных сетей выросли из математики и поэтому унаследовали математические расчеты и схематику построения устройств и связей. А самим термином топология сети охарактеризовали расположение и схему связей между устройствами. Устройствами выступают компьютеры, концентраторы, роутеры, серверы, принтеры и прочая вспомогательная электроника. Кроме расположения устройств, топология обуславливает компоновку кабелей, варианты размещения коммутирующего оборудования, систему обмена сигналами и прочие запросы потребителей компьютерных технологий.

Соединение в сети вызвано необходимостью объединения ресурсов компьютеров, экономией на периферийных устройствах, и как следствие решением комплексных задач. Исходя из конкретных предполагаемых задач и выстраивается топология компьютерной сети. Существуют семь основных видов соединений.

Виды и примеры топологий компьютерных сетей

Первоначально использовали три базовых вида топологий это шина, кольцо и звезда. С развитием технологий прибавились ещё четыре – полносвязная, ячеистая, дерево и смешанная.

Топология шина

Пожалуй наиболее простая и старая топология локальных сетей. Простота обусловлена наличием всего одной магистрали (кабеля) к которой соединены все устройства. Сигналы передаваемые одним, могут получать все. При этом отдельный компьютер отфильтровывает и принимает необходимую только ему информацию.

Достоинства такой схемы:

  • простое моделирование;
  • дешевизна конструкции, при условии, что все устройства располагаются недалеко друг от друга;
  • поломка одного или даже нескольких устройств не влияет на работоспособность остальных элементов сети.
  • неполадки на любом участке, а это обрыв шины или поломка сетевого коннектора нарушают работы всей системы;
  • сложность ремонтных работ, прежде всего определения места неисправности;
  • очень низкая производительность – в каждый момент только одно устройство передаёт данные остальным, увеличение числа приборов ведёт к существенному снижению производительности;
  • сложность расширения сети, для этого приходится полностью заменять участки кабеля.

Именно из-за этих недостатков такие сети морально устарели, не обеспечивают современных требований обмена данными и фактически не применяются. По такой топологии создавались первые локальные сети. Роль шины в таких схемах выполнял коаксиальный кабель. Его прокладывали ко всем компьютерам и возле каждого соединяли т-образным штекером (тройником).

Топология кольцо

В «кольце» устройства подключены последовательно по кругу и по эстафете передают информацию. Четко выделенного центра нет и все приборы практически равнозначны. Если сигнал не предназначен компьютеру, он его транслирует следующему и так до конечного потребителя.

Достоинства соединения кольцом:

  • простота компоновки;
  • возможность построения длинных сетей;
  • не возникает необходимости в дополнительных устройствах;
  • устойчивая работа с хорошей скоростью даже при интенсивной передаче данных.

Но кольцевое соединение имеет и ряд недостатков:

  • каждый компьютер должен быть в рабочем состоянии и участвовать в трансляции, при обрыве кабеля или поломки одного устройства – сеть не работает;
  • на время подсоединения нового прибора схема полностью размыкается, поэтому требуется полное отключение сети;
  • сложное моделирование и настройка соединений;
  • сложный поиск неисправностей и их устранение.

Основное применение кольца получили при создании соединений для удаленных друг от друга компьютеров, установленных в противоположных концах и на разных этажах зданий. Работают такие сети по специально разработанному стандарту Token Ring (802.5). Для надёжности и повышения объёмов обмена информацией монтируют вторую линию. Она используется либо как аварийная, либо по ней передаются данные в противоположном направлении.

Топология звезда

Самая распространённая и технологичная система создания сетей. Командует всем сервер, контроллер или коммутатор. Все компьютеры как лучи подсоединены к нему. Общение между ними происходит только через центральное устройство. Топология сети в которой все компьютеры присоединены к центральному узлу стала основой для построения современных офисных локальных сетей.

В качестве узла используются активные или пассивные коммутаторы. Пассивный, это просто коробка соединения проводов не требующая питания. Активный коммутатор соединяет схему проводной или беспроводной технологией и требует подключения к питанию. Он может усиливать и распределять сигналы. Топология сети звезда обрела популярность благодаря множеству достоинств:

  • высокая скорость и большой объём обмена данными;
  • повреждение передающего кабеля или поломка одного элемента (кроме центрального) не снижает работоспособность сети;
  • широкие возможности для расширения, достаточно смонтировать новый кабель или настроить доступ на коммутаторе;
  • простая диагностика и ремонт;
  • легкий монтаж и сопровождение.

Как и большинство сетей, соединение звезда имеет ряд недостатков, все они связаны с необходимостью использования центрального коммутатора:

  • дополнительные затраты;
  • он же — слабое звено, поломка приводит к неработоспособности всего оборудования;
  • число подключаемых устройств и объём передаваемой информации зависит от его характеристик.

Несмотря на недостатки звезда широко используется при создании сетей на больших и маленьких предприятиях. А соединяя между собой коммутаторы получают комбинированные топологии.

Полносвязная или сеточная топология

В полносвязной системе все устройства соединены между собой отдельным кабелями, образующими сетку. Это очень надёжная схема коммуникации. Но целесообразна только при малом количестве соединяемых приборов, работающих с максимальной загрузкой. С ростом количества оборудования резко возрастает число прокладываемых коммуникаций. Поэтому широкого распространения не получила, в отличие от своей производной – частичной сетки.

Ячеистая топология

Частичная сетка или ячеистая топология напрямую связывает только обменивающиеся самыми большими объёмами данных и самые активные компьютеры. Остальные общаются посредством узловых коммутаторов. Сетка соединяющая ячейки, выбирает маршруты для доставки данных, обходя загруженные и разорванные участки.

Преимущества частичной сети:

  • надежность, при отказе отдельных каналов коммутации будет найден альтернативный путь передачи данных;
  • высокое быстродействие, так как основной поток данных передается по прямым линиям.

Недостатки ячеистой технологии:

  • стоимость монтажа и поддержания достаточно высока, т.к. несмотря на частичность сетки всё равно требуется большое количество коммутационных линий;
  • трудность построения и коммутирования сети при большом количестве соединяемых устройств.

Из-за дороговизны и сложности построения применяется в основном для построения глобальных сетей.

Топология дерево

Эта топология является комбинацией нескольких звёзд. Архитектура построения предусматривает прямое соединение пассивных или активных коммутаторов.

Такой тип топологии чаще всего используют при монтаже локальных сетей с небольшим количеством приборов, в основном при создании корпоративных коммутаторов. Совмещает довольно низкую стоимость и очень хорошее быстродействие. Особенно при комбинировании различных линий передач — сочетании медных и волоконных кабельных систем, и применении управляемых коммутаторов.

Читать еще:  Где найти папку hyper v windows 10. Обзор бесплатной версии Hyper-V

Смешанная топология

Чистое применение какой-то одной топологии редкое явление. Очень часто с целью экономии на коммутационных линиях применяют смешанные схемы. Самыми распространенными из которых являются:

  1. Звёздно — кольцевая.
  2. Звёздно — шинная.

В первом случае компьютеры объединены в звёзды посредством коммутаторов, а они уже закольцованы. По сути все без исключения компьютеры заключены в круг. Такое соединение умножает достоинства обеих сетей, так как коммутаторы собирают в одну точку все подключенные устройства. Они могут просто передавать или усиливать сигнал. Если рассмотреть систему технологии распространения данных, то такая топология подобна обычному кольцу.

В звёздно — шинной сети комбинируется топология шин и звёзд. К центральному устройству соединяют единичные компьютеры и сегменты шин. При такой топологической схеме можно использовать несколько центральных устройств, из которых собирают магистральную шину. В конечном результате собирается звёздно — шинная схема. Пользователи могут одновременно использовать звёздную и шинную топологии, и легко дополнять компьютеры.

Смешанные соединяют в себе все плюсы и минусы составляющих их видов топологий локальных сетей.

Программы для создания топологий сети

Для создания и корректировки написано много программ. Среди самых распространённых и наиболее удобных выделяются следующие:

  • Microsoft Visio
  • eDraw Max
  • Схема Сети
  • Векторный 2D-редактор CADE для Windows
  • Diagram Designer
  • Concept Draw Pro
  • Dia
  • Cisco Packet Tracer LanFlow
  • NetProbe
  • Network Notepad

Некоторые бесплатные, а за многие придётся заплатить. Но даже у большинства платных есть пробный период, за который можно понять подойдёт она или нет.

Топология является самым важным фактором быстродействия и надёжности коммуникаций. При этом всегда можно комбинировать основными схемами топологий для того, чтобы добиться наилучшего результата. Важно знать и помнить, как преимущества и недостатки каждого соединения влияют на проектируемую или эксплуатируемую топологическую сеть. Поэтому схему нужно заранее тщательно планировать.

Топология компьютерных сетей

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

Рассмотрим данные топологии сетей.

Топология типа звезда. При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо. При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера.

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина. При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

Читать еще:  Приложение для изменения внешности. Программа для изменения лиц: обзор лучших приложений

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология. В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).

Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть. В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому “взломать” такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров – серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров – одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие – выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры – для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.

Компьютерные сети: определение, назначение и классификация. Понятие топологии сети. Виды топологий локальных вычислительных сетей.

Комп. сеть– это совокупность компьютеров, каналов связи, коммуникационного оборудования, работающих под управлением сетевой операционной системы и использование сетевого прикладного программного обеспечения.

1)Локальные- объединяют несколько удаленных друг от друга компьютеров, расположенных в пределах сравнительно небольшой территории (комнаты, здания);

2)Региональные- включают в себя несколько ЛВС, принадлежащих одному ведомству (МВД России);

3)Глобальные- объединяют комп. в разных странах и на разных континентах (нужно взять в аренду каналы связи, включить спутниковые каналы связи).

Топология– способ физического соединения комп. в сеть.

1)Шина (комп. подключен вдоль одного кабеля- сегмента, с помощью Т-коннектора):

+самая дешевая в построении и использовании;

-выход из строя кабеля останавливает работу все сети;

2)Звезда (комп. подключены к сегментам кабеля, исходящего из одной точки, или концентрата):

+сеть легко модифицируется;

-выход из строя центрального узла выводит из строя всю сеть;

3)Кольцо (комп. подключены к кабелю, замкнутому в кольцо):

+все комп. имеют равный доступ;

-выход из строя одного комп. может вывезти из строя всю сеть.

трудно локализовать проблему.

Аппаратные средства для построения вычислительных сетей, их характеристики. Виды кабелей используемых в вычислительной сети.

1)Повторители- повторяют принятый сигнал и усиливают его перед передачей;

2)Мост- соединяет две сети, построенные на одной и той же технологии;

3)Маршрутизатор- соединяет несколько сетей через одно устройство, выбирает оптимальный маршрут доставки пакетов;

4)Шлюз- позволяет связываться двум сетям с разными протоколами и разными типами сетевого оборудования;

Читать еще:  Российский научный фонд личный кабинет. Российский научный фонд

5)Модем- преобразует двоичную информацию комп. в сигнал, удобный для передачи, и обратно.

1)Витая пара- ограничена на длину сегмента сети (100-150 м.);

2)Коаксиальный (пример телевизионная антенна)-max длина 150 м.

3)Волоконно-оптический- используется технология светодиодов, высокая помехозащищенность, max длина 2,5 км

Локальные одноранговые сети и сети с выделенным сервером

По типу своего программного обеспечения сети делятся:

1)Одноранговая сеть- это сеть равноправных компьютеров, каждый из которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки ОС.

Достоинством одноранговых сетей является их высокая гибкость: в зависимости от конкретной задачи сеть может использоваться очень активно, либо совсем не использоваться. Из-за большой самостоятельности компьютеров в таких сетях редко бывает ситуация перегрузки (к тому же количество компьютеров обычно невелико). Установка одноранговых сетей довольно проста, к тому же не требуются дополнительные дорогостоящие серверы. Кроме того, нет необходимости в системном администрировании, пользователи могут сами управлять своими ресурсами.

2)Сеть с выделенным сервером- это такая сеть, где один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочими станциями, управления взаимодействием между рабочими станциями и ряд сервисных функций. Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключаются все разделяемые внешние устройства – жесткие диски, принтеры и модемы.

Взаимодействие между рабочими станциями в сети, как правило, осуществляется через сервер. Логическая организация такой сети может быть представлена топологией звезда. Роль центрального устройства выполняет сервер.

Достоинства сети с выделенным сервером:

– надежная система защиты информации;

– отсутствие ограничений на число рабочих станций;

– простота управления по сравнению с одноранговыми сетями.

– высокая стоимость из-за выделения одного компьютера под сервер;

– зависимость быстродействия и надежности сети от сервера;

Программное обеспечение телекоммуникационных технологий. Сетевой протокол: определение и виды.

Телекоммуникационные технологии – это обобщающее понятие, описывающее различные методы, способы и алгоритмы сбора, хранения, обработки, представления и передачи информации.

Протокол – набор правил и процедур, регулирующих порядок осуществления некоторой связи (например, дипломатический протокол).

Сетевой протокол – правила и технические процедуры, позволяющие компьютерам , объединенным в сеть, осуществлять соединение и обмен данными.

Три основные момента, касающиеся протоколов:

Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи. Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает. Несколько протоколов могут работать совместно. В этом случае они образуют так называемый стэк протоколов или набор протоколов.

1)Немаршрутизируемые протоколы- могут обеспечить связь между компьютерами только внутри локальной сети;

2) Маршрутизируемые протоколы:

– могут обеспечить связь между компьютерами внутри локальной сети

– могут обеспечить связь между локальными сетями (между компьютерами из разных локальных сетей).

Основные информационные ресурсы ИНТЕРНЕТ. Доменное имя и IP-адрес, назначение DNS.

Интернет– это глобальная комп. сеть, охватывающая весь мир. Состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям, связанные между собой различными видами связи

Интернет развивался как средство общения и удаленного доступа, поэтому первыми службами глобальной сети являются электронная почта, telnet, FTP. В дальнейшем в сети появились другие сервисы. С появлением распределенной системы гипермедиа Word Wide Web сеть Интернет стала средством массовой информации.

В настоящее время в глобальной сети размещен огромный объем информации по различным направлениям деятельности. Основной объем информационных ресурсов в виде веб-страниц или файлов в формате html находится на веб-сайтах, размещенных на Web-серверах Интернета. Просмотр веб-страниц этих сайтов осуществляется при помощи прикладных программ браузеров (обозревателей).

Кроме того, в Интернете находится много информационных ресурсов (различных типов файлов), которые размещаются на многих серверах, например на FTP-серверах (файлы компьютерных программ, технических описания), в архивах GOPHER (файлы текстов литературных произведений), в базах данных ARCHIE на ARCHIE-серверах, в WAIS-библиотеках (материалы в области исследований и информационных технологий), на серверах баз данных (информация о владельцах доменных имен) регистраторов IP-адресов и регистраторов доменных имён и т.д.

Быстрый рост объема информационных ресурсов привел к необходимости создания специальных поисковых средств: первая поисковая система Archie для поиска файлов в базах данных ARCHIE (помогает находить файлы, хранящиеся на анонимных FTP-серверах), система Gopher, система WAIS в базе данных, которых содержится индексированная информация о ресурсах сети Интернет, поисковые системы или поисковые машины, которые выполняют поиск WWW-страниц на Web-серверах.

Поисковые системы в Интернете для поиска ресурсов могут быть разделены на следующие группы:

· системы поиска FTP-файлов (например, (http://www.filesearch.ru);

· системы поиска в архивах Gopher;

· системы поиска в Usenet;

· каталоги информационных ресурсов;

· порталы информационных ресурсов.
Средства поиска информационных ресурсов в Internet подразделяют на:

· поисковые машины, системы поиска, которые осуществляют поиск по ключевым словам;

· каталоги и порталы информационных ресурсов сети, которые имеют иерархическую структуру для навигации или быстрого поиска информации не по ключевым словам, а по директориям.

Поисковые машины

Поисковая машина – это поисковый сервер, на котором установлена специальная программа, выполняющая автоматический поиск информациионных ресурсов по ключевым словам в заголовках и тексте Web-страниц. К наиболее известным поисковым машинам относятся: Google, Yahoo, AltaVista, Hot Bot, MSN Search, Yandex, Rambler, Апорт, Мета и т.д.

Поисковые системы – это огромные базы данных слов, которые добавляются в базу при периодическом сканировании Web-страниц в пространстве Internet. При помощи программ-роботов (пауков) поисковые системы регулярно “прочесывают” ресурсы сети Internet.

Полученный информационный массив вместе с ссылкой на то, где находится нужное слово, хранится в виде индексных (отсортированных) файлов. При вводе ключевого слова в поисковую машину система обращается к своей базе файлов, выбирает информацию и выдает пользователю перечень Web-страниц, на которых имеются заданные пользователем ключевые слова.

Вследствие разницы в подходах к поиску в различных поисковых системах результаты их поиска не всегда адекватны запросу. Поэтому для получения наиболее полных результатов целесообразно пользоваться различными поисковыми системами или метапоисковыми машинами.

Метапоисковые машины – это системы, проводящие поиск на нескольких поисковых машинах одновременно, например MetaBot – Российская мета-поисковая система, которая осуществляет поиск через российские поисковики (Яндекс, Апорт, Рабмлер и т.д.), мировой метапоиск (Northernlight, All the Web, Raging), а так же смешанный FTP-метапоиск.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: