70 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Видеоакселераторы. Графические акселераторы Что такое адаптер и графический акселератор

Графические акселераторы

Графические акселераторы (ускорители) — специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

Видеоакселераторы

Изображение, которое мы видим на экране монитора, представляет собой выводимое специальным цифроаналоговым преобразователем RAMDAC (Random Access Memory Digital to Analog Converter) и устройством развертки содержимое видеопамяти. Это содержимое может изменяться как центральным процессором, так и графическим процессором видеокарты — ускорителем двухмерной графики (синонимы: 2D-ускоритель, 2D-акселератор, Windows-акселератор или GDI-акселератор). Современные оконные интерфейсы требуют быстрой (за десятые доли секунды) перерисовки содержимого экрана при открытии/закрытии окон, их перемещении и т. п., иначе пользователь будет чувствовать недостаточно быструю реакцию системы на его действия. Для этого процессор должен был бы обрабатывать данные и передавать их по шине со скоростью, всего в 2-3 раза меньшей, чем скорость работы RAMDAC, а это десятки и даже сотни мегабайт в секунду, что практически нереально даже по современным меркам. В свое время, для повышения быстродействия системы были разработаны локальные шины, а позднее — 2D-ускорители.

2D-ускорители представляют собой специализированные графические процессоры, способные самостоятельно рисовать на экране курсор мыши, элементы окон и стандартные геометрические фигуры, предусмотренные GDI — графической библиотекой Windows. 2D-ускорители обмениваются данными с видеопамятью по своей собственной шине, не загружая системную шину процессора. По системной шине 2D-ускоритель получает только GDI-инструкции от центрального процессора, при этом объем передаваемых данных и загрузка процессора в сотни раз меньше.

Современные 2D-ускорители имеют 64- или 128-разрядную шину данных, причем для эффективного использования возможностей этой шины на видеокарте должно быть установлено 2 или 4 Мбайт видеопамяти соответственно, иначе данные будут передаваться по вдвое более узкой шине с соответствующей потерей в быстродействии. Можно сказать, что к настоящему моменту 2D-ускорители достигли совершенства. Все они работают столь быстро, что, несмотря на то, что их производительность на специальных тестах может отличаться от модели к модели на 10-15%, пользователь, скорее всего, не заметит этого различия. Поэтому при выборе 2D-ускорителя следует обратить внимание на другие факторы: качество изображения, наличие дополнительных функций, качество и функциональность драйверов, поддерживаемые частоты кадровой развертки, совместимость с VESA (для любителей DOS-игр) и т. п. Микросхемы 2D-ускорителей в настоящее время производят ATI, Cirrus Logic, Chips&Technologies, Matrox, Number Nine, S3, Trident, Tseng Labs и другие компании.

Под мультимедиа-акселераторами обычно понимают устройства, которые помимо ускорения обычных графических операций могут также выполнять ряд операций по обработке видеоданных от разных источников.

Прежде всего, это функции по ускорению вывода видео в форматах AVI, Indeo, MPEG-1 и других. Проблема в том, что видеофильм в формате NTSC идет со скоростью 30 кадров в секунду, PAL и SECAM — 25 кадр/с. Скорость смены кадров в цифровом видео перечисленных форматов также меньше или равна 30 кадр/с, однако разрешение изображения редко превышает 320 x 240 пикселов. При этих параметрах скорость поступления информации составляет порядка 6 Мбайт/с и процессор успевает выполнить ее декомпрессию и пересылку по шине в видеопамять. Однако такой размер изображения слишком мал для комфортного просмотра на экране, поэтому его обычно масштабируют на весь экран. В этом случае скорость потока данных возрастает до десятков и сотен мегабайт в секунду. Это обстоятельство привело к появлению видеоакселераторов, которые умеют самостоятельно масштабировать видео в форматах AVI и MPEG-1 на весь экран, а также выполнять сглаживание отмасштабированного изображения, чтобы оно не выглядело, как набор квадратиков. Подавляющее большинство современных 2D-ускорителей являются в то же время и видео ускорителями, а некоторые, например ATI Rage128, умеют воспроизводить и видео в формате MPEG-2 (т. е. с исходным разрешением 720 х 480).

Читать еще:  Точечные светодиодные источники света для фотосъемки. Накамерный свет для съемки видео

К мультимедиа-функциям также относят аппаратную цифровую компрессию и декомпрессию видео (что почти не встречается на массовых видеокартах), наличие композитного видеовыхода, вывод TV-сигнала на монитор, низкочастотный видеовход и высокочастотный TV-вход, модуль для работы с телетекстом и другие функции.

Видеоакселераторы. Графические акселераторы Что такое адаптер и графический акселератор

Для решения многих задач с использованием компьютера необходима высокока­чественная графика. Изображение такого качества требует вывода на экран боль­шого количества пикселов. Но сначала цвет каждого пиксела нужно вычислить и записать его в видеобуфер. Оттуда информация пересылается в дисплей с такой скоростью, чтобы экран обновлялся по меньшей мере 30 раз в секунду.

Вычисление интенсивности и цвета пикселов может выполняться программ­ным обеспечением. Результирующее изображение следует записать в видеобу­фер, а оттуда переслать на дисплей через шину компьютера. Однако объемы обра­батываемых таким образом данных будут настолько велики, что, если возложить всю их обработку на процессор, у него не останется времени для выполнения дру­гих задач. Кроме того, использование шины компьютера для пересылки содержи­мого видеобуфера на дисплей приведет к тому, что шина также почти полностью будет занята этими данными. Если один пиксел занимает 32 бита, для изображе­ния размером 1024 х 1024 пикселов понадобится 4 Мбайт, и для его пересылки потребуется шина со скоростью передачи не менее 120 Мбайт/с.

В большинстве графических приложений на экран выводятся трехмерные (3D) объекты. В частности, в компьютерных играх создается искусственный трехмер­ный мир с видеоизображениями, формируемыми программным путем. Для их по­лучения требуются очень сложные вычисления, которые лучше всего выполнять на отдельном специализированном процессоре. Такой процессор, называемый GPU (Graphics-Processing Unit – устройство обработки графики), является осно­вой популярных графических плат, установленных в большинстве персональных компьютеров. Кроме процессора графическая плата содержит высокоскоростную память объемом от 8 до 64 Мбайт. Эта память используется графическим процес­сором для выполнения вычислений и хранения результирующего изображения, предназначенного для вывода на экран. Дисплей подключается прямо к графиче­ской плате, так что она может обмениваться с ним информацией без помощи ши­ны компьютера. Высококачественные графические платы могут обновлять экран со скоростью от 75 до 200 раз в секунду.

Графическая плата может соединяться с компьютером посредством шины (напри­мер, PCI). Однако чаще на материнской плате компьютера имеется соединитель­ный слот, называемый AGP (Accelerated Graphics Port – ускоренный графический порт), специально предназначенный для графической платы. Это 32-разрядный порт, поддерживающий более высокую скорость пересылки данных, чем шина PCI. Он известен как AGP 1х, 2х, 4х или 8х, где AGP 1х – это исходный стандарт, определяющий передачу данных со скоростью 264 Мбайт/с. Последние версии стандарта AGP поддерживают в несколько раз большие скорости передачи дан­ных, в частности стандартом AGP 8х устанавливается скорость передача данных, равная 2 Гбайт/с.

В компьютерной графике трехмерный объект представляется в виде поверхно­сти, состоящей из большого количества маленьких многоугольников (как прави­ло, треугольников). Основной задачей графической обработки является преобра­зование трехмерного изображения в двухмерное, максимально близкое к тому, каким оно видится человеческим глазом. Для определения проекции и перспекти­ вы объектов требуется вычислять местоположения вершин треугольников, пред­ставляющих разные фрагменты изображения. Далее с помощью сложных алго­ритмов создания реалистичного изображения вычисляются цвета и тени каждого треугольника. При этих вычислениях учитывается расположение источника све­та, его отражение от различных поверхностей, тени и т. п. Важной частью данного процесса является формирование определенной текстуры поверхности, напри­мер древесных волокон или кирпичной кладки. Текстура обычно задается с помо­щью элементов, именуемых текселами (texel). Отдельные треугольники заполня­ются текселами, в результате чего создается впечатление текстурной поверхности объекта. Скрытые части изображения удаляются путем отсечения (clipping). По­следний этап обработки изображения, когда определяется цвет и яркость каждого пиксела, называется самплингом (sampling), а весь вычислительный процесс, в ре­зультате которого трехмерное изображение превращается в набор отправляемых на дисплей пикселов, – визуализацией (rendering).

Читать еще:  Abit NF7-S: все мы в чем-то дети…. Долгожданный обзор Abit NF7

В случае движущихся изображений все эти вычисления повторяются по многу раз в секунду. Чтобы движение на экране было плавным, пикселы изображения должны пересчитываться как минимум 20 раз в секунду, а лучше 30 или 40. Это значение называется частотой кадров. Скорость выполнения графической платой описанных вычислений характеризуется ее коэффициентом T&L (Transformations and Lighting – преобразование и освещение), равным количеству треугольников, для которых видеокарта может выполнить проецирование, отсечение, освещение и самплинг за одну секунду. Как правило, это значение изменяется в пределах от 10 до 30 млн. треугольников в секунду.

В табл. 10.1 приведены характеристики графической платы RADEON VE про­изводства ATI Corp. Похожими возможностями обладает графический процессор GeForce 2 MX производства «Vidia Corp. Это примеры популярных плат для пер­сональных компьютеров. В профессиональных системах используются более мощные платы с расширенными возможностями. А в ближайшем будущем в этой быстро развивающейся области компьютерной индустрии ожидается появление еще более мощных процессоров.

Таблица 10,1. Графическая плата RADEON VE
Компонент Описание

Микросхема GPU RADEON VE

Память До 64 Мбайт, DDR SDRAM

Цвет 32 бита, включая 8 бит, зарезервированных для будущего

Число пикселов 2048 х 1536

Коэффициент T&L 30 млн треугольников в секунду

Частота обновления От 75 до 200 раз в секунду в зависимости от установленного

Дополнительные Поддержка TV, VCR, DVD, HDTV и MPEG 2

Программное обеспечение графических плат

Графические платы предназначены для реализации множества сложных функций. Чтобы их использовать, нужно иметь специальное программное обеспечение, раз­работанное для конкретной платы. В этой области очень мало стандартов, и рынок открыт для конкуренции. Таким образом, для улучшения качества изображения недостаточно просто установить в компьютер лучшую графическую плату. Требу­ется специальное программное обеспечение. Очевидно, что назрела необходимость в разработке стандартов программных интерфейсов приложений (Application Programming Interface, API), позволяющих создавать аппаратно-независимое про­граммное обеспечение. И такие стандарты уже начинают появляться. Когда они получат достаточное распространение, программное обеспечение, интенсивно ис­пользующее возможности графики (например, компьютерные игры), сможет кор­ректно работать с графическими платами разных производителей. Примером такого стандарта является OpenGL (Open Graphics Language – открытая графи­ческая библиотека). Ему и подобным стандартам, связанным с различными ас­пектами обработки графики, соответствует все больше графических плат.

Представляем летнюю десятку “видеохитов” от “Домашнего ПК”. Мы собрали двадцать графических акселераторов от ATI и NVidia, чтобы выбрать из них самые скоростные. Конечно, быстродействие — не единственный критерий, которым мы руководствуемся при покупке видеокарты, есть еще и цена. И мы обязательно обсудим этот аспект, рассматривая каждую модель с точки зрения покупателя.

Что такое видеоадаптер и графический акселератор?

С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами широко используются разнообразные устройства компьютерной обработки видеосигналов:

 Графические акселераторы (ускорители) — специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

 TV-тюнеры — видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом можно следить за ходом передачи, не прекращая работу.

Читать еще:  Подключить интернет платежи. Как сделать оплату в интернет-магазине через платежные системы? Баланс между комфортом и безопасностью

Что такое клавиатура?

Все символы, набираемые на клавиатуре, немедленно отображаются на мониторе в позиции курсора (курсор — светящийся символ на экране монитора, указывающий позицию, на которой будет отображаться следующий вводимый с клавиатуры знак).

Наиболее распространена сегодня клавиатура c раскладкой клавиш QWERTY (читается “кверти”), названная так по клавишам, расположенным в верхнем левом ряду алфавитно-цифровой части клавиатуры:

Рис. 2.13. Клавиатура компьютера

Такая клавиатура имеет 12 функциональных клавиш, расположенных вдоль верхнего края. Нажатие функциональной клавиши приводит к посылке в компьютер не одного символа, а целой совокупности символов. Функциональные клавиши могут программироваться пользователем. Например, во многих программах для получения помощи (подсказки) задействована клавиша F1, а для выхода из программы — клавиша F10.

Управляющие клавиши имеют следующее назначение:

  • Enter — клавиша ввода;
  • Esc (Escape — выход) клавиша для отмены каких-либо действий, выхода из программы, из меню и т.п.;
  • Ctrl и Alt — эти клавиши самостоятельного значения не имеют, но при нажатии совместно с другими управляющими клавишами изменяют их действие;
  • Shift (регистр) — обеспечивает смену регистра клавиш (верхнего на нижний и наоборот);
  • Insert (вставлять) — переключает режимы вставки (новые cимволы вводятся посреди уже набранных, раздвигая их) и замены (старые символы замещаются новыми);
  • Delete (удалять) — удаляет символ с позиции курсора;
  • Back Space или — удаляет символ перед курсором;
  • Home и End — обеспечивают перемещение курсора в первую и последнюю позицию строки, соответственно;
  • Page Up и Page Down — обеспечивают перемещение по тексту на одну страницу (один экран) назад и вперед, соответственно;
  • Tab — клавиша табуляции, обеспечивает перемещение курсора вправо сразу на несколько позиций до очередной позиции табуляции;
  • Caps Lock — фиксирует верхний регистр, обеспечивает ввод прописных букв вместо строчных;
  • Print Screen — обеспечивает печать информации, видимой в текущий момент на экране.
  • Длинная нижняя клавиша без названия — предназначена для ввода пробелов.
  • Клавиши , , и служат для перемещения курсора вверх, вниз, влево и вправо на одну позицию или строку.

Малая цифровая клавиатура используется в двух режимах — ввода чисел и управления курсором. Переключение этих режимов осуществляется клавишей Num Lock.

Клавиатура содержит встроенный микроконтроллер (местное устройство управления), который выполняет следующие функции:

  • последовательно опрашивает клавиши, считывая введенный сигнал и вырабатывая двоичный скан-код клавиши;
  • управляет световыми индикаторами клавиатуры;
  • проводит внутреннюю диагностику неисправностей;
  • осуществляет взаимодействие с центральным процессором через порт ввода-вывода клавиатуры.

Клавиатура имеет встроенный буфер — промежуточную память малого размера, куда помещаются введённые символы. В случае переполнения буфера нажатие клавиши будет сопровождаться звуковым сигналом — это означает, что символ не введён (отвергнут). Работу клавиатуры поддерживают специальные программы, “зашитые” в BIOS, а также драйвер клавиатуры, который обеспечивает возможность ввода русских букв, управление скоростью работы клавиатуры и др.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: