22 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Все для литиевых аккумуляторов: микросхемы STM для зарядных устройств и мониторинга батарей. Микросхемы STBC08 и STC4054

LTC4054 Контроллер заряда литиевых аккумуляторов

Недавно возникла необходимость в зарядном устройстве для литиевых аккумуляторов. Покупать готовое решение не хотелось, тем более под рукой была плата от старого нерабочего телефона Samsung X100 с этой микросхемой на борту. Ее также можно найти и на платах от других моделей телефонов Samsung(C100, С110, Х100, E700, E800, E820, P100, P510).

Микросхема выпускается в небольшом, но удобном для пайки корпусе. Маркировка «LTH7» или «LTADY», разницы в них нет, это один и тот же контроллер.


Вдаваться в мельчайшие подробности работы с микросхемой вроде мудреных формул с зависимостью от таких параметров, как температурное сопротивление печатной платы, я не буду. Опишу только самые необходимые особенности.

  • Ток заряда до 800мА(по крайней мере, так указано в даташите)
  • Оптимальное напряжение питания от 4,3 до 6 вольт
  • Индикация заряда
  • Защита от КЗ на выходе
  • Защита от перегрева(снижение тока заряда при температуре больше 120 градусов)
  • Минимальное число дополнительных деталей в схеме

Индикация: на первую ножку можно просто повесить светодиод, который будет гореть во время заряда, а можно встроить цепь заряда в цифровое устройство и следить за ее состоянием с помощью микроконтроллера.

Ток заряда: задается резистором между пятым выводом микросхемы и землей по формуле I=1000/R, где I-ток заряда в амперах, R-сопротивление резистора в омах.
Внимание! Не стоит сразу ставить высокий ток заряда, лучше начинать подбирать сопротивление с меньших токов и следить за температурой микросхемы. Она имеет свойство весьма ощутимо греться.
Я остановился на сопротивлении 3 килоома, ток

300мА, во время заряда плата теплая, но не горячая.

Теплоотвод: микросхема выполнена в очень маленьком корпусе, от которого все же необходимо отводить тепло. Возможности поставить ее на радиатор нет, поэтому производитель советует оставлять на печатной плате вокруг нее большое количество меди(особенно на земле), использовать по возможности более широкие дорожки.

Плату сделал под разъем MiniUSB и SMD компоненты.

Зарядное устройство испытано на аккумуляторах от телефонов, работает стабильно.

Читать еще:  Караоке на пк для домашнего пользования. Программы для караоке

Даташит
В архиве ниже печатная плата(SprintLayout).

Зарядное устройство для Li-Pol аккумуляторов на LTC4054, улучшенная версия.

  • Цена: $0.63
  • Перейти в магазин

Понадобилось мне сделать простенькую зарядку для маленьких литиевых аккумуляторов- типа 14500 и 10440. И понеслось…

В запасе были очень хорошие и проверенные ME4057, но мне они показались избыточными- и потому я заказал на Алиэкспрессе клопов LTC4054, благо дешевые, в корпусе SOT-23-5.
Микросхема мне в целом понравилась. Функции свои полностью выполняет, документация по ней доступна: ссылка
Однако, микросхеме присущ ряд недостатков.

Первый: отсутствие нормальной индикации. Микросхема предназначена для работы совместно с микроконтроллером, где-нибудь в мобильнике, потому у нее только одна нога, имеющая три состояния:
1. Жесткая привязка к земле. Идет заряд аккумулятора.
2. Нежесткая привязка к земле. Микросхема готова к работе.
3. Вывод ни к чему не привязан. Недостаточное напряжение питания, или исчо какая неприятность.

У моих экземпляров нога работала так: жесткая привязка- идет заряд, нежесткая привязка- батарейка отсутствует, вывод ни к чему не привязан- зарядка кончилась.
Я повесил туда красный светодиод через резистор, по окончанию зарядки он гаснет.

Сразу обнаружился очередной косяк: если аккумулятор не был оборудован защитой на DW01- светодиод светился одинаково ярко вне зависимости от того, шел ли заряд аккумулятора или аккумулятор отсутствовал. Пробовал шунтировать выход микросхемы емкостью (как на me4057)- светодиод начинал мигать. Проанализировал схему защиты: DW01 подключается к положительному выводу питания через резистор 100 Ом, зашунтирована емкостью 0.1 Мкф. Добавил аналогичную цепочку на выход LTC4054- светодиод стал вести себя как полагается. 🙂 Выходит, микросхема изначально предназначена для работы с защищенными аккумуляторами, но нигде в даташите этого не сказано!

Я применил держатель батареи Blossom (тоже с Алиэкспресса) с хорошими плоскими пружинными контактами- и тут вылез еще один косяк- очень легко вставить аккумулятор неправильно. Микросхема LTC4054 защитой от переполюсовки аккумулятора, к сожалению, не оборудована. 🙁 Я проверил «что будет, если переполюсовать»- ожидаемо пошел белый дым. Посему- пришлось потратить вечер на сочинение простенькой схемки защиты от переполюсовки на двух мосфетах (AO3400 и AO3401, тоже купленных на Алиэкспресс). Кроме того, я добавил зеленый светодиод для удобства, по принципу «красный погас- зеленый загорелся».

Читать еще:  Инструкция к применение вставить симку в планшет. Проблемы с SIM-картой на Android

Окончательную схему устройства прилагаю:

Испытания показали, что защита работает безукоризненно. Однако, она внесла свои коррективы, и у меня случайно и весьма удачно получилась вот такая индикация:
1. Горит красный светодиод- идет зарядка.
2. Горит зеленый светодиод- зарядка окончена.
3. Горят оба светодиода вполнакала- батарея отсутствует.
4. Горит зеленый светодиод, красный слабо светится- батарея переполюсована.
Микросхема чувствительна к происходящему на выводе «Bat», потому на работу индикации влияют номиналы R5, R6, R7, можете с ними поиграться.

Номиналы токоограничивающих резисторов я не указал сознательно- подберите их под ваши светодиоды (у меня зеленый обычный- 750 Ом, красный сверхяркий- 1.2 КОм).
Rпрог. зависит от зарядного тока, его выбирают по формуле: R=1000/Ichrg, где Ichrg- ток заряда аккумулятора.
Гасящий резистор Rдоп. в даташите указан как «опция», но поставить его весьма желательно- при большом токе заряда микросхема может перегреться и уйти в защиту по теплу, а так- он погасит излишек напряжения и рассеит избыток тепла. Чем больше его номинал и мощность- тем лучше, но выбирать его следует по таблице «Charge Current vs RCC» на странице 12 документации.
Отвод тепла от микросхемы осуществляется через ее выводы, в основном «земляной», посему- при изготовлении платы лучше понаделать больших полигонов, которые сыграют роль теплоотвода.

У меня получилась вот такая маленькая симпатичная платочка, разместившаяся снизу батарейкодержателя:

Все для литиевых аккумуляторов: микросхемы STM для зарядных устройств и мониторинга батарей. Микросхемы STBC08 и STC4054

Специализированные микросхемы TC4054, STC4054, LTC4054 (контроллеры питания) идентичны и различаются лишь производителем и ценой. Их большой плюс – малое количество обвязки – всего 2 пассивных элемента. По желанию можно включить светодиод с ограничительным резистором, который будет индицировать процесс заряда: горит при заряде и гаснет по его окончании.

Читать еще:  Как правильно поменять или вытащить симку из айфона самостоятельно. Как извлечь SIM карту из iPhone Не вытаскивается симка из айфона 4

Напряжение питания микросхемы лежит в пределах 4.25 – 6.5 вольт, таким образом ЗУ на этой микросхеме можно питать от USB разъёмов (кстати, на основе этих микросхем и построено большинство простых зарядок питаемых от USB). Заряжает до 4.2 В с максимальным током до 800 мА. Имеет защиту от к.з. на выходе и от перегрева.

Такие микросхемы можно обнаружить, например, на платах телефонов от Samsung (модели X100, C100, С110, E700, E800, E820, P100, P510 и некоторых других). Микросхема выпускается в небольшом корпусе, но паять её относительно удобно. Маркировка на корпусе может быть «LTH7» или «LTADY».

Схема зарядного на TC4054

Вот схема ЗУ на основе этой микросхемы. Ток заряда задается резистором R2 по формуле I = 1000 / R2, где I – ток в амперах, R2 – сопротивление в омах.

Следует заметить, что при высоких токах заряда микросхема весьма ощутимо греется и оптимальным для неё будет ток заряда 300 мА (при сопротивлении R2 = 3 кОм). При перегреве микросхемы встроенная схема защиты автоматически снижает ток в нагрузке!

Корпус микросхемы не предназначен для установки её на радиатор, поэтому производитель рекомендует оставлять на печатной плате вокруг нее большое количество меди (особенно на общем «земляном» и на 3-м выводах) и делать на печатной плате по возможности более широкие дорожки.

В некоторых источниках встречалась субъективная информация о том, что микросхемы в корпусе LTH7 в отличие от LTADY могут «поднять» сильно севший аккумулятор даже с напряжение меньше 2.9 вольт, но у меня лично не было возможности проверить эту информацию.

Аналоги TC4054

У этой микросхемы существует множество аналогов (по данным справочной литературы):

MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051.

Естественно перед использованием аналогов, рекомендуется сверяться с их даташитами (посмотреть документацию).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: